論文の概要: LRFusionPR: A Polar BEV-Based LiDAR-Radar Fusion Network for Place Recognition
- arxiv url: http://arxiv.org/abs/2504.19186v1
- Date: Sun, 27 Apr 2025 10:20:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.170261
- Title: LRFusionPR: A Polar BEV-Based LiDAR-Radar Fusion Network for Place Recognition
- Title(参考訳): LRFusionPR: 位置認識のための極性BEVベースのLiDAR-レーダー核融合ネットワーク
- Authors: Zhangshuo Qi, Luqi Cheng, Zijie Zhou, Guangming Xiong,
- Abstract要約: 自律運転においては、位置認識はGPSを用いた環境におけるグローバルな位置決めに不可欠である。
本稿では,LiDARを単一チップまたは走査型レーダーで融合させることにより,認識精度とロバスト性を向上させるLRFusionPRを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, place recognition is critical for global localization in GPS-denied environments. LiDAR and radar-based place recognition methods have garnered increasing attention, as LiDAR provides precise ranging, whereas radar excels in adverse weather resilience. However, effectively leveraging LiDAR-radar fusion for place recognition remains challenging. The noisy and sparse nature of radar data limits its potential to further improve recognition accuracy. In addition, heterogeneous radar configurations complicate the development of unified cross-modality fusion frameworks. In this paper, we propose LRFusionPR, which improves recognition accuracy and robustness by fusing LiDAR with either single-chip or scanning radar. Technically, a dual-branch network is proposed to fuse different modalities within the unified polar coordinate bird's eye view (BEV) representation. In the fusion branch, cross-attention is utilized to perform cross-modality feature interactions. The knowledge from the fusion branch is simultaneously transferred to the distillation branch, which takes radar as its only input to further improve the robustness. Ultimately, the descriptors from both branches are concatenated, producing the multimodal global descriptor for place retrieval. Extensive evaluations on multiple datasets demonstrate that our LRFusionPR achieves accurate place recognition, while maintaining robustness under varying weather conditions. Our open-source code will be released at https://github.com/QiZS-BIT/LRFusionPR.
- Abstract(参考訳): 自律運転においては、位置認識はGPSを用いた環境におけるグローバルな位置決めに不可欠である。
LiDARとレーダーに基づく位置認識法は、LiDARが正確な航続距離を提供するのに対して、レーダーは耐候性に優れており、注目を集めている。
しかし, 位置認識にLiDAR-レーダー融合を効果的に活用することは依然として困難である。
レーダーデータのノイズとスパースの性質は、認識精度をさらに向上させる可能性を制限する。
さらに、異種レーダー構成は、統合されたモジュール間融合フレームワークの開発を複雑にする。
本稿では,LiDARを単一チップまたは走査型レーダーで融合させることにより,認識精度とロバスト性を向上させるLRFusionPRを提案する。
技術的には、両分岐ネットワークは、統一された極座標鳥の眼球図(BEV)表現内で異なるモードを融合するために提案される。
融合ブランチでは、クロスアテンションを使用して、クロスモダリティ特徴相互作用を実行する。
融合ブランチからの知識は同時に蒸留ブランチに転送され、レーダーを唯一の入力とし、ロバスト性をさらに向上する。
最終的に、両方のブランチのディスクリプタは連結され、場所検索用のマルチモーダルグローバルディスクリプタが生成される。
複数のデータセットを総合的に評価したところ、LRFusionPRは様々な気象条件下で頑健さを維持しつつ、正確な位置認識を実現していることがわかった。
私たちのオープンソースコードはhttps://github.com/QiZS-BIT/LRFusionPRで公開されます。
関連論文リスト
- RobuRCDet: Enhancing Robustness of Radar-Camera Fusion in Bird's Eye View for 3D Object Detection [68.99784784185019]
暗い照明や悪天候はカメラの性能を低下させる。
レーダーは騒音と位置のあいまいさに悩まされる。
本稿では,BEVの頑健な物体検出モデルであるRobuRCDetを提案する。
論文 参考訳(メタデータ) (2025-02-18T17:17:38Z) - SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data [5.344444942640663]
レーダー生データは、しばしば過剰なノイズを含むが、レーダー点雲は限られた情報しか保持しない。
本稿では,適応的なサブサンプリング手法と,空間パターンを利用したネットワークアーキテクチャを提案する。
RADIalデータセットの実験により,SparseRadNetはオブジェクト検出における最先端(SOTA)性能を超え,自由空間セグメンテーションにおけるSOTA精度に近づいた。
論文 参考訳(メタデータ) (2024-06-15T11:26:10Z) - Multistatic-Radar RCS-Signature Recognition of Aerial Vehicles: A Bayesian Fusion Approach [10.908489565519211]
無人航空機(UAV)用のレーダー自動目標認識(RATR)は、電磁波(EMW)を送信し、受信したレーダーエコーに対して目標型認識を行う。
これまでの研究では、RATRにおけるモノスタティックレーダよりも、マルチスタティックレーダの構成の利点を強調していた。
本稿では,複数のレーダからの分類確率ベクトルを集約するために,OBF(Optimal Bayesian Fusion)を用いた完全ベイズRATRフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-28T02:11:47Z) - RaLF: Flow-based Global and Metric Radar Localization in LiDAR Maps [8.625083692154414]
我々は、環境のLiDARマップにレーダースキャンをローカライズするための、新しいディープニューラルネットワークベースのアプローチであるRaLFを提案する。
RaLFは、レーダーとLiDAR機能エンコーダ、グローバルなディスクリプタを生成する場所認識ヘッド、レーダースキャンとマップ間の3DF変換を予測するメートル法ローカライゼーションヘッドで構成されている。
複数の実世界の運転データセットに対する我々のアプローチを広く評価し、RaLFが位置認識とメートル法ローカライゼーションの両方において最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-09-18T15:37:01Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - RaLiBEV: Radar and LiDAR BEV Fusion Learning for Anchor Box Free Object
Detection Systems [13.046347364043594]
自動運転では、LiDARとレーダーは環境認識に不可欠である。
最近の最先端の研究は、レーダーとLiDARの融合が悪天候の堅牢な検出につながることを明らかにしている。
鳥眼ビュー融合学習に基づくアンカーボックスフリー物体検出システムを提案する。
論文 参考訳(メタデータ) (2022-11-11T10:24:42Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。