Hierarchical Attention Generates Better Proofs
- URL: http://arxiv.org/abs/2504.19188v1
- Date: Sun, 27 Apr 2025 10:35:05 GMT
- Title: Hierarchical Attention Generates Better Proofs
- Authors: Jianlong Chen, Chao Li, Yang Yuan, Andrew C Yao,
- Abstract summary: We introduce textbfHierarchical Attention, a regularization method that aligns attention mechanisms with mathematical reasoning structures.<n>Our approach establishes a five-level hierarchy from foundational elements to high-level concepts, ensuring structured information flow in proof generation.
- Score: 8.676187819105298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have shown promise in formal theorem proving, but their token-level processing often fails to capture the inherent hierarchical nature of mathematical proofs. We introduce \textbf{Hierarchical Attention}, a regularization method that aligns LLMs' attention mechanisms with mathematical reasoning structures. Our approach establishes a five-level hierarchy from foundational elements to high-level concepts, ensuring structured information flow in proof generation. Experiments demonstrate that our method improves proof success rates by 2.05\% on miniF2F and 1.69\% on ProofNet while reducing proof complexity by 23.81\% and 16.50\% respectively. The code is available at https://github.com/Car-pe/HAGBP.
Related papers
- LeanProgress: Guiding Search for Neural Theorem Proving via Proof Progress Prediction [74.79306773878955]
We introduce LeanProgress, a method that predicts the progress in the proof.<n>Our experiments show that LeanProgress achieves an overall prediction accuracy of 75.1%.
arXiv Detail & Related papers (2025-02-25T07:46:36Z) - Generating Millions Of Lean Theorems With Proofs By Exploring State Transition Graphs [6.65877320351217]
We developed LeanNavigator, a novel method for generating a large-scale dataset of Lean theorems and proofs.<n>We generated 4.7 million theorems totaling 1 billion tokens, surpassing previous datasets by more than an order of magnitude.<n>Using this extensive dataset, we trained an AI model that outperforms the state-of-the-art ReProver model in theorem-proving tasks.
arXiv Detail & Related papers (2025-02-16T06:20:39Z) - Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving [72.8626512877667]
We introduce Goedel-Prover, an open-source language model that achieves state-of-the-art (as of April 5 2025) performance in automated formal proof generation for mathematical problems.<n>First, we train LLMs to convert natural language math problems from the Numina dataset to equivalent formal statements in Lean 4.<n>Next, we develop a large dataset of formal proofs by training a series of provers.<n>Finally, we obtain the dataset Goedel-Pset-v1-solved, which contains proofs for over 800K statements from Goedel-Pset-v1
arXiv Detail & Related papers (2025-02-11T15:27:35Z) - Efficient Neural Theorem Proving via Fine-grained Proof Structure Analysis [50.020850767257095]
We propose ProofAug, a novel theorem proving method that enjoys superior sample efficiency.
Our method is validated on the miniF2F-test benchmark using the open-source deepseek-math-7b-base model and the Isabelle proof assistant.
arXiv Detail & Related papers (2025-01-30T12:37:06Z) - Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation [71.32761934724867]
This work proposes Alchemy, a framework for data synthesis that constructs formal theorems through symbolic mutation.
For each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it.
As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M.
arXiv Detail & Related papers (2024-10-21T08:04:21Z) - Proof Automation with Large Language Models [6.587933406842906]
Large Language Models (LLMs) have shown promise in automatically generating informal proofs in natural language.
We propose PALM, a novel generate-then-repair approach that first prompts an LLM to generate an initial proof and then leverages targeted symbolic methods to iteratively repair low-level problems.
Our results show that PALM significantly outperforms other state-of-the-art approaches, successfully proving 76.6% to 180.4% more theorems.
arXiv Detail & Related papers (2024-09-22T00:19:27Z) - Proving Theorems Recursively [80.42431358105482]
We propose POETRY, which proves theorems in a level-by-level manner.
Unlike previous step-by-step methods, POETRY searches for a sketch of the proof at each level.
We observe a substantial increase in the maximum proof length found by POETRY, from 10 to 26.
arXiv Detail & Related papers (2024-05-23T10:35:08Z) - Enhancing Neural Theorem Proving through Data Augmentation and Dynamic
Sampling Method [1.8130068086063336]
We introduce DS-Prover, a novel dynamic sampling method for theorem proving.
We augment the training dataset by decomposing simplification and rewrite tactics with multiple premises into tactics with single premises.
We achieve a state-of-the-art performance (Pass@1) of 14.2% on the ProofNet dataset and a performance of 29.8% on MiniF2F.
arXiv Detail & Related papers (2023-12-20T09:55:21Z) - Generating Natural Language Proofs with Verifier-Guided Search [74.9614610172561]
We present a novel stepwise method NLProofS (Natural Language Proof Search)
NLProofS learns to generate relevant steps conditioning on the hypothesis.
It achieves state-of-the-art performance on EntailmentBank and RuleTaker.
arXiv Detail & Related papers (2022-05-25T02:22:30Z) - PRover: Proof Generation for Interpretable Reasoning over Rules [81.40404921232192]
We propose a transformer-based model that answers binary questions over rule-bases and generates the corresponding proofs.
Our model learns to predict nodes and edges corresponding to proof graphs in an efficient constrained training paradigm.
We conduct experiments on synthetic, hand-authored, and human-paraphrased rule-bases to show promising results for QA and proof generation.
arXiv Detail & Related papers (2020-10-06T15:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.