Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving
- URL: http://arxiv.org/abs/2502.07640v3
- Date: Sat, 19 Apr 2025 13:53:05 GMT
- Title: Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving
- Authors: Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia, Danqi Chen, Sanjeev Arora, Chi Jin,
- Abstract summary: We introduce Goedel-Prover, an open-source language model that achieves state-of-the-art (as of April 5 2025) performance in automated formal proof generation for mathematical problems.<n>First, we train LLMs to convert natural language math problems from the Numina dataset to equivalent formal statements in Lean 4.<n>Next, we develop a large dataset of formal proofs by training a series of provers.<n>Finally, we obtain the dataset Goedel-Pset-v1-solved, which contains proofs for over 800K statements from Goedel-Pset-v1
- Score: 72.8626512877667
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We introduce Goedel-Prover, an open-source language model that achieves state-of-the-art (as of April 5 2025) performance in automated formal proof generation for mathematical problems. A key challenge in this field is the scarcity of formalized mathematical statements and proofs, which we address through the following approaches. First, we train LLMs to convert natural language math problems from the Numina dataset to equivalent formal statements in Lean 4. This process creates the dataset Goedel-Pset-v1, which includes 1.64 million formal statements. Next, we develop a large dataset of formal proofs by training a series of provers. Each new prover can prove many statements that previous ones could not, and these new proofs are added to the training set for the next prover. Finally, we obtain the dataset Goedel-Pset-v1-solved, which contains proofs for over 800K statements from Goedel-Pset-v1. Supervised fine-tuning (SFT) of DeepSeek-Prover-V1.5-Base on Goedel-Pset-v1-solved (i.e., no RL) yields a Goedel-Prover-SFT that achieves a success rate of 57.6% (Pass@32) on miniF2F, surpassing the previous leader DeepSeek-Prover-V1.5-RL (trained using SFT + RL on a proprietary dataset) by 7.6%. On PutnamBench, Goedel-Prover-SFT successfully solves 7 problems (Pass@512), ranking first on the leaderboard. We provide extensive discussion of our training methodology, highlighting the key design choices that contribute to Goedel-Prover's strong performance. Further RL training (including DPO) improves Goedel-Prover-SFT's success rate to over 60% (Pass@32) on miniF2F. To aid future research, we provide extensive discussion of our training methodology and design choices. We also fully open-source our codes, models, and datasets. Additionally, we open-source formal proofs for 29.7K problems in Lean Workbook, nearly doubling the 15.7K solved by prior provers.
Related papers
- Leanabell-Prover: Posttraining Scaling in Formal Reasoning [26.534511088861446]
We investigate the entire posttraining of ATP, aiming to align it with breakthroughs in reasoning models in natural languages.
We have successfully improved existing formal provers, including DeepSeek-Prover-v1.5 and Goedel-Prover, achieving state-of-the-art performance in the field of whole-proof generation.
arXiv Detail & Related papers (2025-04-08T15:15:26Z) - Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning [65.2421542320293]
Reasoning abilities are crucial components of general intelligence.
Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks.
This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through textbfOutcome textbfREwtextbfArd-based reinforcement textbfLearning for mathematical reasoning tasks.
arXiv Detail & Related papers (2025-02-10T18:57:29Z) - STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving [33.61458249318183]
Self-play Theorem Prover (STP) takes on two roles, conjecturer and prover.<n>STP simultaneously takes on two roles, conjecturer and prover.<n>We evaluate with both Lean and Isabelle formal versifiers.
arXiv Detail & Related papers (2025-01-31T23:01:48Z) - InternLM2.5-StepProver: Advancing Automated Theorem Proving via Expert Iteration on Large-Scale LEAN Problems [47.93470713879515]
InternLM2.5-Steper achieves open-source state-of-the-art on MiniF2F, Lean-Workbook-Plus, ProofNet, and Putnam benchmarks.
It achieves a pass of 65.9% on the MiniF2F-test and proves (or disproves) 17.0% of problems in Lean-Workbook-Plus.
arXiv Detail & Related papers (2024-10-21T07:18:23Z) - Proof Automation with Large Language Models [6.587933406842906]
Large Language Models (LLMs) have shown promise in automatically generating informal proofs in natural language.
We propose PALM, a novel generate-then-repair approach that first prompts an LLM to generate an initial proof and then leverages targeted symbolic methods to iteratively repair low-level problems.
Our results show that PALM significantly outperforms other state-of-the-art approaches, successfully proving 76.6% to 180.4% more theorems.
arXiv Detail & Related papers (2024-09-22T00:19:27Z) - DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data [65.5290035371111]
We introduce an approach to generate extensive Lean 4 proof data derived from high-school and undergraduate-level mathematical competition problems.
We fine-tune the DeepSeekMath 7B model on this synthetic dataset, which comprises 8 million formal statements with proofs.
Our model successfully proved 5 out of 148 problems in the Lean 4 Formalized International Mathematical Olympiad (FIMO) benchmark, while GPT-4 failed to prove any.
arXiv Detail & Related papers (2024-05-23T09:03:42Z) - MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data [85.50740598523818]
MUSTARD is a framework that masters uniform synthesis of theorem and proof data of high quality and diversity.
We present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points.
We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data.
arXiv Detail & Related papers (2024-02-14T05:57:58Z) - Baldur: Whole-Proof Generation and Repair with Large Language Models [8.100054850290507]
We use large language models, trained on natural language text and code and fine-tuned on proofs, to generate whole proofs for theorems at once.
We combine this proof generation model with a fine-tuned repair model to repair generated proofs, further increasing proving power.
We evaluate our method in a prototype, Baldur, and evaluate it on a benchmark of 6,336 Isabelle/HOL theorems and their proofs.
arXiv Detail & Related papers (2023-03-08T22:00:15Z) - PRover: Proof Generation for Interpretable Reasoning over Rules [81.40404921232192]
We propose a transformer-based model that answers binary questions over rule-bases and generates the corresponding proofs.
Our model learns to predict nodes and edges corresponding to proof graphs in an efficient constrained training paradigm.
We conduct experiments on synthetic, hand-authored, and human-paraphrased rule-bases to show promising results for QA and proof generation.
arXiv Detail & Related papers (2020-10-06T15:47:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.