FlexPara: Flexible Neural Surface Parameterization
- URL: http://arxiv.org/abs/2504.19210v1
- Date: Sun, 27 Apr 2025 12:30:08 GMT
- Title: FlexPara: Flexible Neural Surface Parameterization
- Authors: Yuming Zhao, Qijian Zhang, Junhui Hou, Jiazhi Xia, Wenping Wang, Ying He,
- Abstract summary: This paper introduces FlexPara, an unsupervised neural optimization framework to achieve both global and multi-chart surface parameterizations.<n>We ingeniously design and combine a series of geometrically-interpretable sub-networks, with specific functionalities, to construct a bi-directional cycle mapping framework for global parameterization.<n>Experiments demonstrate the universality, superiority, and inspiring potential of our neural surface parameterization paradigm.
- Score: 71.65203972602673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Surface parameterization is a fundamental geometry processing task, laying the foundations for the visual presentation of 3D assets and numerous downstream shape analysis scenarios. Conventional parameterization approaches demand high-quality mesh triangulation and are restricted to certain simple topologies unless additional surface cutting and decomposition are provided. In practice, the optimal configurations (e.g., type of parameterization domains, distribution of cutting seams, number of mapping charts) may vary drastically with different surface structures and task characteristics, thus requiring more flexible and controllable processing pipelines. To this end, this paper introduces FlexPara, an unsupervised neural optimization framework to achieve both global and multi-chart surface parameterizations by establishing point-wise mappings between 3D surface points and adaptively-deformed 2D UV coordinates. We ingeniously design and combine a series of geometrically-interpretable sub-networks, with specific functionalities of cutting, deforming, unwrapping, and wrapping, to construct a bi-directional cycle mapping framework for global parameterization without the need for manually specified cutting seams. Furthermore, we construct a multi-chart parameterization framework with adaptively-learned chart assignment. Extensive experiments demonstrate the universality, superiority, and inspiring potential of our neural surface parameterization paradigm. The code will be publicly available at https://github.com/AidenZhao/FlexPara
Related papers
- Learning Bijective Surface Parameterization for Inferring Signed Distance Functions from Sparse Point Clouds with Grid Deformation [50.26314343851213]
Inferring signed distance functions (SDFs) from sparse point clouds remains a challenge in surface reconstruction.
We present a novel approach that learns a dynamic deformation network to predict SDFs in an end-to-end manner.
Experimental results on synthetic and real scanned datasets demonstrate that our method significantly outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2025-03-31T02:27:02Z) - Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
We introduce the Flatten Anything Model (FAM), an unsupervised neural architecture to achieve global free-boundary surface parameterization.
Compared with previous methods, our FAM directly operates on discrete surface points without utilizing connectivity information.
Our FAM is fully-automated without the need for pre-cutting and can deal with highly-complex topologies.
arXiv Detail & Related papers (2024-05-23T14:39:52Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field.
We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives.
arXiv Detail & Related papers (2023-08-10T06:40:19Z) - Neural Convolutional Surfaces [59.172308741945336]
This work is concerned with a representation of shapes that disentangles fine, local and possibly repeating geometry, from global, coarse structures.
We show that this approach achieves better neural shape compression than the state of the art, as well as enabling manipulation and transfer of shape details.
arXiv Detail & Related papers (2022-04-05T15:40:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.