論文の概要: Deep Reinforcement Learning for Automated Web GUI Testing
- arxiv url: http://arxiv.org/abs/2504.19237v1
- Date: Sun, 27 Apr 2025 13:42:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.191164
- Title: Deep Reinforcement Learning for Automated Web GUI Testing
- Title(参考訳): Web GUI自動テストのための深層強化学習
- Authors: Zhiyu Gu, Chenxu Liu, Guoquan Wu, Yifei Zhang, ChenXi Yang, Zheheng Liang, Wei Chen, Jun Wei,
- Abstract要約: WebRLEDは複雑なWebアプリケーションのGUIテストを自動化する効果的な方法である。
WebRLEDは、既存の最先端技術(SOTA)と比較して、コード/状態カバレッジと障害検出率が高い。
- 参考スコア(独自算出の注目度): 13.62121897768763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated GUI testing of web applications has always been considered a challenging task considering their large state space and complex interaction logic. Deep Reinforcement Learning (DRL) is a recent extension of Reinforcement Learning (RL), which takes advantage of the powerful learning capabilities of neural networks, making it suitable for complex exploration space. In this paper, leveraging the capability of deep reinforcement learning, we propose WebRLED, an effective approach for automated GUI testing of complex web applications. WebRLED has the following characteristics: (1) a grid-based action value learning technique, which can improve the efficiency of state space exploration; (2) a novel action discriminator which can be trained during the exploration to identify more actions; (3) an adaptive, curiosity-driven reward model, which considers the novelty of an explored state within an episode and global history, and can guide exploration continuously. We conduct a comprehensive evaluation of WebRLED on 12 open-source web applications and a field study of the top 50 most popular web applications in the world. The experimental results show that WebRLED achieves higher code/state coverage and failure detection rate compared to existing state-of-the-art (SOTA) techniques. Furthermore, WebRLED finds 695 unique failures in 50 real-world applications.
- Abstract(参考訳): WebアプリケーションのGUI自動テストは、その大きな状態空間と複雑な相互作用ロジックを考慮して、常に困難なタスクとみなされてきた。
深層強化学習(Deep Reinforcement Learning, DRL)は、ニューラルネットワークの強力な学習能力を活用する強化学習(Reinforcement Learning, RL)の拡張である。
本稿では、深層強化学習の能力を活用し、複雑なWebアプリケーションのGUI自動テストのための効果的なアプローチであるWebRLEDを提案する。
WebRLEDは,(1)状態空間探索の効率を向上するグリッドベースの行動価値学習技術,(2)より多くの行動を特定するために探索中に訓練可能な新たな行動識別装置,(3)エピソード内の探索状態の新規性や世界史を考慮した適応的好奇心駆動報酬モデル,および連続的な探索のガイドを可能にする。
我々は、12のオープンソースWebアプリケーション上でWebRLEDを総合的に評価し、世界で最も人気のあるWebアプリケーションのトップ50についてフィールドスタディを行います。
実験の結果,WebRLEDは既存のSOTA(State-of-the-art)技術と比較して,コード/状態カバレッジと障害検出率が高いことがわかった。
さらに、WebRLEDは50の現実世界のアプリケーションで695のユニークな障害を発見した。
関連論文リスト
- WebThinker: Empowering Large Reasoning Models with Deep Research Capability [60.81964498221952]
WebThinkerは、大規模な推論モデルに、Webを自律的に検索し、Webページをナビゲートし、推論プロセス中に研究レポートをドラフトする権限を与えるディープリサーチエージェントである。
また、textbf Autonomous Think-Search-and-Draft戦略を採用しており、モデルがシームレスに推論、情報収集、レポート作成をリアルタイムで行うことができる。
我々のアプローチは複雑なシナリオにおけるLEMの信頼性と適用性を高め、より有能で多目的な深層研究システムへの道を開く。
論文 参考訳(メタデータ) (2025-04-30T16:25:25Z) - DeepResearcher: Scaling Deep Research via Reinforcement Learning in Real-world Environments [20.498100965239818]
我々は、LLMベースのディープリサーチエージェントのエンドツーエンドトレーニングのための、初の総合的なフレームワークであるDeepResearcherを紹介する。
固定コーパス内にすべての必要な情報が存在すると仮定するRAGベースのアプローチとは異なり、我々の手法はオープンウェブのノイズ、非構造化、動的性質をナビゲートするエージェントを訓練する。
オープンドメインの研究タスクに関する大規模な実験は、DeepResearcherがエンジニアリングベースの素早いベースラインよりも最大28.9ポイントの大幅な改善を達成していることを示している。
論文 参考訳(メタデータ) (2025-04-04T04:41:28Z) - Comprehensive Overview of Reward Engineering and Shaping in Advancing Reinforcement Learning Applications [0.0]
本稿では,強化学習アルゴリズムの効率性と有効性を高めるために,報酬工学と報酬形成の重要性を強調する。
強化学習の大幅な進歩にもかかわらず、いくつかの制限が続いた。
主要な課題の1つは、多くの現実世界のシナリオにおける報酬のまばらで遅れた性質である。
実世界の環境を正確にモデル化することの複雑さと強化学習アルゴリズムの計算要求は、依然としてかなりの障害である。
論文 参考訳(メタデータ) (2024-07-22T09:28:12Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
Keypoint-based Affordance Guidance for Improvements (KAGI) は、視覚言語モデル(VLM)によって形成される報酬を自律的なRLに活用する手法である。
自然言語記述によって指定された実世界の操作タスクにおいて、KAGIは自律的なRLのサンプル効率を改善し、30Kのオンライン微調整ステップでタスク完了を成功させる。
論文 参考訳(メタデータ) (2024-07-14T21:41:29Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Lifelong Adaptive Machine Learning for Sensor-based Human Activity
Recognition Using Prototypical Networks [0.0]
連続学習は、生涯学習としても知られ、機械学習分野への関心が高まりつつある研究トピックである。
我々は,連続機械学習の分野における最近の進歩を基盤に,プロトタイプネットワーク(LPPNet-HAR)を用いた生涯適応型学習フレームワークを設計する。
LAPNet-HARは、タスクフリーなデータインクリメンタルな方法でセンサベースのデータストリームを処理する。
論文 参考訳(メタデータ) (2022-03-11T00:57:29Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - How to Train Your Robot with Deep Reinforcement Learning; Lessons We've
Learned [111.06812202454364]
本稿では,ロボット深部RLのケーススタディをいくつか紹介する。
深部RLにおける一般的な課題と,それらの課題について論じる。
また、他の卓越した課題についても概説し、その多くが現実世界のロボティクスの設定に特有のものである。
論文 参考訳(メタデータ) (2021-02-04T22:09:28Z) - AutoOD: Automated Outlier Detection via Curiosity-guided Search and
Self-imitation Learning [72.99415402575886]
外乱検出は重要なデータマイニングの課題であり、多くの実用的応用がある。
本稿では,最適なニューラルネットワークモデルを探すことを目的とした自動外乱検出フレームワークであるAutoODを提案する。
さまざまな実世界のベンチマークデータセットに対する実験結果から、AutoODが特定したディープモデルが最高のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2020-06-19T18:57:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。