論文の概要: Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID
- arxiv url: http://arxiv.org/abs/2504.19244v1
- Date: Sun, 27 Apr 2025 13:58:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.193861
- Title: Semantic-Aligned Learning with Collaborative Refinement for Unsupervised VI-ReID
- Title(参考訳): 教師なしVI-ReIDのための協調的リファインメントを用いたセマンティックアライメント学習
- Authors: De Cheng, Lingfeng He, Nannan Wang, Dingwen Zhang, Xinbo Gao,
- Abstract要約: 教師なしの人物再識別(USL-VI-ReID)は、モデル学習のための人間のアノテーションを使わずに、同じ人物の歩行者像を異なるモードでマッチングすることを目指している。
従来の手法では、ラベルアソシエーションアルゴリズムを用いて異質な画像の擬似ラベルを統一し、グローバルな特徴学習のためのコントラスト学習フレームワークを設計していた。
本稿では,各モダリティによって強調される特定のきめ細かいパターンを対象とするSALCR(Semantic-Aligned Learning with Collaborative Refinement)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 82.12123628480371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised visible-infrared person re-identification (USL-VI-ReID) seeks to match pedestrian images of the same individual across different modalities without human annotations for model learning. Previous methods unify pseudo-labels of cross-modality images through label association algorithms and then design contrastive learning framework for global feature learning. However, these methods overlook the cross-modality variations in feature representation and pseudo-label distributions brought by fine-grained patterns. This insight results in insufficient modality-shared learning when only global features are optimized. To address this issue, we propose a Semantic-Aligned Learning with Collaborative Refinement (SALCR) framework, which builds up optimization objective for specific fine-grained patterns emphasized by each modality, thereby achieving complementary alignment between the label distributions of different modalities. Specifically, we first introduce a Dual Association with Global Learning (DAGI) module to unify the pseudo-labels of cross-modality instances in a bi-directional manner. Afterward, a Fine-Grained Semantic-Aligned Learning (FGSAL) module is carried out to explore part-level semantic-aligned patterns emphasized by each modality from cross-modality instances. Optimization objective is then formulated based on the semantic-aligned features and their corresponding label space. To alleviate the side-effects arising from noisy pseudo-labels, we propose a Global-Part Collaborative Refinement (GPCR) module to mine reliable positive sample sets for the global and part features dynamically and optimize the inter-instance relationships. Extensive experiments demonstrate the effectiveness of the proposed method, which achieves superior performances to state-of-the-art methods. Our code is available at \href{https://github.com/FranklinLingfeng/code-for-SALCR}.
- Abstract(参考訳): 教師なし視覚赤外人物再識別(USL-VI-ReID)は、モデル学習のための人間のアノテーションを使わずに、同じ人物の歩行者像を異なるモードで一致させようとしている。
従来の手法では、ラベルアソシエーションアルゴリズムを用いて異質な画像の擬似ラベルを統一し、グローバルな特徴学習のためのコントラスト学習フレームワークを設計していた。
しかし,これらの手法は,細粒度パターンによる特徴表現と擬似ラベル分布の相違を見落としている。
この洞察は、グローバルな特徴のみを最適化する場合、モダリティ共有学習が不十分になる。
この問題に対処するために,各モダリティに強調される特定のきめ細かいパターンに対する最適化目標を構築し,異なるモダリティのラベル分布間の相補的アライメントを実現するセマンティック・アライメント・アライメント・コラボレーティブ・リファインメント(SALCR)フレームワークを提案する。
具体的には,グローバルラーニングによるデュアルアソシエーション(DAGI, Dual Association with Global Learning)モジュールを導入し,クロスモーダルなインスタンスの擬似ラベルを双方向に統一する。
その後、FGSALモジュールを用いて、相互モダリティのインスタンスから各モダリティに強調される部分レベルの意味的整合パターンを探索する。
最適化の目的は、セマンティックアライメントされた特徴とその対応するラベル空間に基づいて定式化される。
ノイズの多い擬似ラベルから生じる副作用を軽減するため,グローバルおよび部分的特徴に対する信頼性の高い正のサンプルセットを抽出し,インスタンス間関係を最適化するGPCR (Global-Part Collaborative Refinement) モジュールを提案する。
提案手法の有効性を実証し, 最先端手法よりも優れた性能を示す。
私たちのコードは \href{https://github.com/FranklinLingfeng/code-for-SALCR} で利用可能です。
関連論文リスト
- Semantic-guided Representation Learning for Multi-Label Recognition [13.046479112800608]
マルチラベル認識(MLR)では、画像内の各データインスタンスに複数のラベルを割り当てる。
近年のビジョンと言語事前学習法は、ゼロショットMLRタスクの処理において大きな進歩を遂げている。
本研究では,セマンティック誘導型表現学習手法(SigRL)を導入し,モデルが効果的な視覚的およびテキスト的表現を学習できるようにする。
論文 参考訳(メタデータ) (2025-04-04T08:15:08Z) - Extended Cross-Modality United Learning for Unsupervised Visible-Infrared Person Re-identification [34.93081601924748]
教師なし学習は、ラベルなしのモダリティデータセットからモダリティ不変の特徴を学習することを目的としている。
既存の手法では、クロスモダリティクラスタリングが欠如し、クラスタレベルの関連性を過度に追求する。
拡張Modality-Camera Clustering (EMCC) と Two-Step Memory Updating Strategy (TSMem) を併用した拡張Modality-Camera Clustering (EMCC) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-26T09:30:26Z) - Exploring Homogeneous and Heterogeneous Consistent Label Associations for Unsupervised Visible-Infrared Person ReID [57.500045584556794]
均質かつ不均一なインスタンスレベルの構造を同時に説明できるModality-Unified Label Transfer (MULT) モジュールを導入する。
提案したMULTは、生成した擬似ラベルがモダリティ間の整合性を維持しつつ、モダリティ内の構造的整合性を維持することを保証する。
実験の結果,提案手法は既存のUSL-VI-ReID法よりも優れていた。
論文 参考訳(メタデータ) (2024-02-01T15:33:17Z) - Adaptive Global-Local Representation Learning and Selection for
Cross-Domain Facial Expression Recognition [54.334773598942775]
ドメインシフトは、クロスドメイン顔表情認識(CD-FER)において重要な課題となる
適応的グローバルローカル表現学習・選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-20T02:21:41Z) - Multi-Memory Matching for Unsupervised Visible-Infrared Person Re-Identification [30.983346937558743]
USL-VI-ReIDの主な課題は、擬似ラベルを効果的に生成し、擬似ラベル対応を確立することである。
我々はUSL-VI-ReIDのためのマルチメモリマッチングフレームワークを提案する。
公開SYSU-MM01とRegDBデータセットの実験は、確立された相互モダリティ対応の信頼性を示す。
論文 参考訳(メタデータ) (2024-01-12T01:24:04Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
本稿では, クラスタ間マッチングによるモダリティギャップを低減するための, クラスタマッチングに基づく新たな学習フレームワークを提案する。
このような監視信号の下では、クラスタレベルで特徴を協調的に整列させるために、モダリティ・特定・モダリティ・非依存(MSMA)コントラスト学習フレームワークが提案されている。
公開SYSU-MM01とRegDBデータセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-05-22T03:27:46Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
本稿では,いくつかの対象サンプルがラベル付けされていれば,ドメインシフトに対処するのにどの程度役立つか検討する。
ランドマークの可能性を最大限に追求するために、ランドマークから各クラスのターゲットプロトタイプを計算するプロトタイプアライメント(PA)モジュールを組み込んでいます。
具体的には,ラベル付き画像に深刻な摂動を生じさせ,PAを非自明にし,モデル一般化性を促進する。
論文 参考訳(メタデータ) (2021-04-19T08:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。