ODExAI: A Comprehensive Object Detection Explainable AI Evaluation
- URL: http://arxiv.org/abs/2504.19249v1
- Date: Sun, 27 Apr 2025 14:16:14 GMT
- Title: ODExAI: A Comprehensive Object Detection Explainable AI Evaluation
- Authors: Loc Phuc Truong Nguyen, Hung Truong Thanh Nguyen, Hung Cao,
- Abstract summary: We introduce the Object Detection Explainable AI Evaluation (ODExAI) to assess XAI methods in object detection.<n>We benchmark a set of XAI methods across two widely used object detectors and standard datasets.
- Score: 1.338174941551702
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Explainable Artificial Intelligence (XAI) techniques for interpreting object detection models remain in an early stage, with no established standards for systematic evaluation. This absence of consensus hinders both the comparative analysis of methods and the informed selection of suitable approaches. To address this gap, we introduce the Object Detection Explainable AI Evaluation (ODExAI), a comprehensive framework designed to assess XAI methods in object detection based on three core dimensions: localization accuracy, faithfulness to model behavior, and computational complexity. We benchmark a set of XAI methods across two widely used object detectors (YOLOX and Faster R-CNN) and standard datasets (MS-COCO and PASCAL VOC). Empirical results demonstrate that region-based methods (e.g., D-CLOSE) achieve strong localization (PG = 88.49%) and high model faithfulness (OA = 0.863), though with substantial computational overhead (Time = 71.42s). On the other hand, CAM-based methods (e.g., G-CAME) achieve superior localization (PG = 96.13%) and significantly lower runtime (Time = 0.54s), but at the expense of reduced faithfulness (OA = 0.549). These findings demonstrate critical trade-offs among existing XAI approaches and reinforce the need for task-specific evaluation when deploying them in object detection pipelines. Our implementation and evaluation benchmarks are publicly available at: https://github.com/Analytics-Everywhere-Lab/odexai.
Related papers
- Navigating the Maze of Explainable AI: A Systematic Approach to Evaluating Methods and Metrics [10.045644410833402]
We introduce LATEC, a large-scale benchmark that critically evaluates 17 prominent XAI methods using 20 distinct metrics.<n>We showcase the high risk of conflicting metrics leading to unreliable rankings and consequently propose a more robust evaluation scheme.<n>LATEC reinforces its role in future XAI research by publicly releasing all 326k saliency maps and 378k metric scores as a (meta-evaluation) dataset.
arXiv Detail & Related papers (2024-09-25T09:07:46Z) - Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark [73.58840254552656]
Unsupervised graph-level anomaly detection (GLAD) and unsupervised graph-level out-of-distribution (OOD) detection have received significant attention in recent years.<n>We present a underlinetextbfUnified underlinetextbfBenchmark for unsupervised underlinetextbfGraph-level underlinetextbfOOD and anomaunderlinetextbfLy underlinetextbfDetection (ourmethod)<n>Our benchmark encompasses 35 datasets
arXiv Detail & Related papers (2024-06-21T04:07:43Z) - Open World Object Detection in the Era of Foundation Models [53.683963161370585]
We introduce a new benchmark that includes five real-world application-driven datasets.
We introduce a novel method, Foundation Object detection Model for the Open world, or FOMO, which identifies unknown objects based on their shared attributes with the base known objects.
arXiv Detail & Related papers (2023-12-10T03:56:06Z) - Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with Prototypical Concept-based Explanations [13.60538902487872]
We present a novel post-hoc concept-based XAI framework that conveys besides instance-wise (local) also class-wise (global) decision-making strategies via prototypes.
We demonstrate the effectiveness of our approach in identifying out-of-distribution samples, spurious model behavior and data quality issues across three datasets.
arXiv Detail & Related papers (2023-11-28T10:53:26Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Extending CAM-based XAI methods for Remote Sensing Imagery Segmentation [7.735470452949379]
We introduce a new XAI evaluation methodology and metric based on "Entropy" to measure the model uncertainty.
We show that using Entropy to monitor the model uncertainty in segmenting the pixels within the target class is more suitable.
arXiv Detail & Related papers (2023-10-03T07:01:23Z) - Precise Benchmarking of Explainable AI Attribution Methods [0.0]
We propose a novel evaluation approach for benchmarking state-of-the-art XAI attribution methods.
Our proposal consists of a synthetic classification model accompanied by its derived ground truth explanations.
Our experimental results provide novel insights into the performance of Guided-Backprop and Smoothgrad XAI methods.
arXiv Detail & Related papers (2023-08-06T17:03:32Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - An Experimental Investigation into the Evaluation of Explainability
Methods [60.54170260771932]
This work compares 14 different metrics when applied to nine state-of-the-art XAI methods and three dummy methods (e.g., random saliency maps) used as references.
Experimental results show which of these metrics produces highly correlated results, indicating potential redundancy.
arXiv Detail & Related papers (2023-05-25T08:07:07Z) - XC: Exploring Quantitative Use Cases for Explanations in 3D Object
Detection [10.47625686392663]
We propose a set of measures, named Explanation Concentration (XC) scores, that can be used for downstream tasks.
XC scores quantify the concentration of attributions within the boundaries of detected objects.
We evaluate effectiveness of XC scores via the task of distinguishing true positive (TP) and false positive (FP) detected objects in the KIT and datasets.
arXiv Detail & Related papers (2022-10-20T21:02:55Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.