論文の概要: LM-MCVT: A Lightweight Multi-modal Multi-view Convolutional-Vision Transformer Approach for 3D Object Recognition
- arxiv url: http://arxiv.org/abs/2504.19256v1
- Date: Sun, 27 Apr 2025 14:30:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.200153
- Title: LM-MCVT: A Lightweight Multi-modal Multi-view Convolutional-Vision Transformer Approach for 3D Object Recognition
- Title(参考訳): LM-MCVT:3次元物体認識のための軽量多モード多視点畳み込み変換器アプローチ
- Authors: Songsong Xiong, Hamidreza Kasaei,
- Abstract要約: ロボットアプリケーションにおける3次元物体認識を強化するために,軽量マルチモーダル・マルチビュー・コンボリューショナル・ビジョン・トランスフォーマネットワーク(LM-MCVT)を提案する。
提案手法を合成モデルNet40データセット上で評価し,95.6%の認識精度を実現する。
その結果,合成および実世界の3Dデータ間での3Dオブジェクト認識における手法の堅牢性を示す。
- 参考スコア(独自算出の注目度): 5.317624228510749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In human-centered environments such as restaurants, homes, and warehouses, robots often face challenges in accurately recognizing 3D objects. These challenges stem from the complexity and variability of these environments, including diverse object shapes. In this paper, we propose a novel Lightweight Multi-modal Multi-view Convolutional-Vision Transformer network (LM-MCVT) to enhance 3D object recognition in robotic applications. Our approach leverages the Globally Entropy-based Embeddings Fusion (GEEF) method to integrate multi-views efficiently. The LM-MCVT architecture incorporates pre- and mid-level convolutional encoders and local and global transformers to enhance feature extraction and recognition accuracy. We evaluate our method on the synthetic ModelNet40 dataset and achieve a recognition accuracy of 95.6% using a four-view setup, surpassing existing state-of-the-art methods. To further validate its effectiveness, we conduct 5-fold cross-validation on the real-world OmniObject3D dataset using the same configuration. Results consistently show superior performance, demonstrating the method's robustness in 3D object recognition across synthetic and real-world 3D data.
- Abstract(参考訳): レストラン、家、倉庫などの人間中心の環境では、ロボットはしばしば3Dオブジェクトを正確に認識する上で困難に直面している。
これらの課題は、多様なオブジェクト形状を含む、これらの環境の複雑さと変動性に起因する。
本稿では,ロボットアプリケーションにおける3次元物体認識を強化するために,軽量マルチモーダル・マルチビュー・コンボリューショナル・ビジョン・トランスフォーマネットワーク(LM-MCVT)を提案する。
本手法では,Globally Entropy-based Embeddings Fusion (GEEF) 法を用いて,マルチビューを効率的に統合する。
LM-MCVTアーキテクチャは、プリレベルおよびミドルレベルの畳み込みエンコーダと、ローカルおよびグローバルトランスフォーマーを組み込んで、特徴抽出と認識精度を向上させる。
提案手法を合成モデルNet40データセット上で評価し,既存の最先端手法を超越した4ビュー設定を用いて,95.6%の認識精度を実現する。
実世界のOmniObject3Dデータセット上で,同じ構成で5倍のクロスバリデーションを行う。
その結果,合成および実世界の3Dデータ間での3Dオブジェクト認識における手法の堅牢性を示す。
関連論文リスト
- IAAO: Interactive Affordance Learning for Articulated Objects in 3D Environments [56.85804719947]
IAAOは知的エージェントのための明示的な3Dモデルを構築するフレームワークで,対話を通して環境内の明瞭な物体の理解を得る。
マスク特徴とビュー一貫性ラベルを多視点画像から抽出し,まず3次元ガウススティング(3DGS)を用いて各オブジェクト状態の階層的特徴とラベルフィールドを構築する。
次に、3Dガウスプリミティブ上でオブジェクトと部分レベルのクエリを実行し、静的および明瞭な要素を識別し、大域的な変換と局所的な調音パラメータをアベイランスとともに推定する。
論文 参考訳(メタデータ) (2025-04-09T12:36:48Z) - Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
既存の方法は、バードアイビュー(BEV)とパースペクティブビュー(PV)の両方のモードから特徴を投影することで、単一ビューでセンサフュージョンを実行する。
本稿では,中間クエリレベルとオブジェクトクエリレベルの両方で,BEVとPVの両方の機能を組み合わせたプログレッシブフュージョンフレームワークProFusion3Dを提案する。
我々のアーキテクチャは、局所的およびグローバルな特徴を融合させ、3次元オブジェクト検出の堅牢性を高める。
論文 参考訳(メタデータ) (2024-10-09T22:57:47Z) - Articulate-Anything: Automatic Modeling of Articulated Objects via a Vision-Language Foundation Model [35.184607650708784]
Articulate-Anythingは、テキスト、画像、ビデオを含む多くの入力モダリティから、多種多様な複雑なオブジェクトの明瞭化を自動化する。
本システムでは,メッシュ検索機構を通じて既存の3Dデータセットを,反復的に提案,評価,洗練を行うアクタ・クリティカル・システムとともに活用する。
論文 参考訳(メタデータ) (2024-10-03T19:42:16Z) - vFusedSeg3D: 3rd Place Solution for 2024 Waymo Open Dataset Challenge in Semantic Segmentation [0.0]
VFusedSeg3Dは、カメラ画像のリッチなセマンティックコンテンツと、LiDARの正確な深度センシングを使用して、強力で包括的な環境理解を生成する。
我々の新しい特徴融合技術は、LiDAR点雲の幾何学的特徴とカメラ画像の意味的特徴を組み合わせたものである。
マルチモダリティ技術を用いることで、性能が大幅に向上し、検証セットで72.46%の最先端のmIoUが得られる。
論文 参考訳(メタデータ) (2024-08-09T11:34:19Z) - Augmented Reality based Simulated Data (ARSim) with multi-view consistency for AV perception networks [47.07188762367792]
ARSimは3次元合成オブジェクトを用いた実写多視点画像データの拡張を目的としたフレームワークである。
実データを用いて簡易な仮想シーンを構築し,その内部に戦略的に3D合成資産を配置する。
結果として得られたマルチビュー一貫性のあるデータセットは、自動運転車のためのマルチカメラ知覚ネットワークのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-03-22T17:49:11Z) - Multi-Modal Dataset Acquisition for Photometrically Challenging Object [56.30027922063559]
本稿では,3次元視覚タスクにおける現在のデータセットの限界について,精度,サイズ,リアリズム,および光度に挑戦する対象に対する適切な画像モダリティの観点から検討する。
既存の3次元認識と6次元オブジェクトポーズデータセットを強化する新しいアノテーションと取得パイプラインを提案する。
論文 参考訳(メタデータ) (2023-08-21T10:38:32Z) - UniTR: A Unified and Efficient Multi-Modal Transformer for
Bird's-Eye-View Representation [113.35352122662752]
屋外3次元知覚のためのマルチモーダルバックボーンUniTRを提案する。
UniTRは、統一されたモデリングと共有パラメータで様々なモダリティを処理する。
UniTRは基本的にタスクに依存しないバックボーンであり、異なる3D知覚タスクを自然にサポートする。
論文 参考訳(メタデータ) (2023-08-15T12:13:44Z) - AutoDecoding Latent 3D Diffusion Models [95.7279510847827]
本稿では,3次元オートデコーダをコアとした静的・明瞭な3次元アセットの生成に対して,新しいアプローチを提案する。
3D Autodecoderフレームワークは、ターゲットデータセットから学んだプロパティを潜時空間に埋め込む。
次に、適切な中間体積潜在空間を特定し、ロバストな正規化と非正規化演算を導入する。
論文 参考訳(メタデータ) (2023-07-07T17:59:14Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - Self-Supervised Multi-View Learning via Auto-Encoding 3D Transformations [61.870882736758624]
MV-TER (Multi-View Transformation Equivariant Representations) を学習するための新しい自己監督型パラダイムを提案する。
具体的には、3Dオブジェクト上で3D変換を行い、投影による変換前後の複数のビューを取得する。
次に、変換前後の複数のビューの融合特徴表現から3d変換パラメータをデコードすることにより、内在的な3dオブジェクト表現をキャプチャする表現を自己学習する。
論文 参考訳(メタデータ) (2021-03-01T06:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。