論文の概要: OPAL: Visibility-aware LiDAR-to-OpenStreetMap Place Recognition via Adaptive Radial Fusion
- arxiv url: http://arxiv.org/abs/2504.19258v2
- Date: Wed, 30 Apr 2025 10:06:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.202481
- Title: OPAL: Visibility-aware LiDAR-to-OpenStreetMap Place Recognition via Adaptive Radial Fusion
- Title(参考訳): OPAL:Adaptive Radial FusionによるLiDAR-to-OpenStreetMap位置認識
- Authors: Shuhao Kang, Martin Y. Liao, Yan Xia, Olaf Wysocki, Boris Jutzi, Daniel Cremers,
- Abstract要約: OPALは、OpenStreetMap(OSM)を軽量で最新のものとして活用する、LiDARの位置認識のための新しいネットワークである。
私たちの重要なイノベーションは、疎いLiDARスキャンと、慎重に設計された2つのコンポーネントを通して構造化されたOSMデータのドメイン格差を埋めることにあります。
KITTIとKITTI-360データセットの実験はOPALの優位性を示し、トップ1検索マッチの@1m閾値で15.98%高いリコールを達成した。
- 参考スコア(独自算出の注目度): 33.87605068407066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR place recognition is a critical capability for autonomous navigation and cross-modal localization in large-scale outdoor environments. Existing approaches predominantly depend on pre-built 3D dense maps or aerial imagery, which impose significant storage overhead and lack real-time adaptability. In this paper, we propose OPAL, a novel network for LiDAR place recognition that leverages OpenStreetMap (OSM) as a lightweight and up-to-date prior. Our key innovation lies in bridging the domain disparity between sparse LiDAR scans and structured OSM data through two carefully designed components. First, a cross-modal visibility mask that identifies maximal observable regions from both modalities to guide feature learning. Second, an adaptive radial fusion module that dynamically consolidates radial features into discriminative global descriptors. Extensive experiments on the KITTI and KITTI-360 datasets demonstrate OPAL's superiority, achieving 15.98% higher recall at @1m threshold for top-1 retrieved matches, along with 12x faster inference speed compared to the state-of-the-art approach. Code and datasets will be publicly available.
- Abstract(参考訳): LiDARの位置認識は、大規模屋外環境での自律的なナビゲーションとクロスモーダルなローカライゼーションにとって重要な機能である。
既存のアプローチは主に、構築済みの3D高密度マップや空中画像に依存しており、ストレージのオーバーヘッドが大きく、リアルタイム適応性が欠如している。
本稿では,OpenStreetMap(OSM)を軽量かつ最新に活用した,LiDAR位置認識のための新しいネットワークOPALを提案する。
私たちの重要なイノベーションは、疎いLiDARスキャンと、慎重に設計された2つのコンポーネントを通して構造化されたOSMデータのドメイン格差を埋めることにあります。
第一に、モダリティから最大可観測領域を識別し、特徴学習をガイドするクロスモーダル可視マスク。
第2に、ラジアル特徴を動的に分別的大域的記述子に集約する適応ラジアル融合モジュール。
KITTIとKITTI-360データセットの大規模な実験はOPALの優位性を示し、トップ1検索マッチの@1m閾値で15.98%、最先端のアプローチに比べて12倍高速な推論速度を達成した。
コードとデータセットが公開される。
関連論文リスト
- Mapping and Localization Using LiDAR Fiducial Markers [0.8702432681310401]
Dissertationは、LiDARフィデューシャルマーカーを用いたマッピングとローカライゼーションのための新しいフレームワークを提案する。
Intensity Image-based LiDAR Fiducial Marker (IFM)システムを導入する。
LFMに基づく新しいマッピングとローカライズ手法は、順序のない低オーバーラップ点雲を登録する。
論文 参考訳(メタデータ) (2025-02-05T17:33:59Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
都市景観におけるLiDARスキャンをリアルタイムかつ高忠実に再現するLiDAR-GSを提案する。
この手法は,公開可能な大規模シーンデータセットのレンダリングフレームレートと品質の両面において,最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-10-07T15:07:56Z) - GSPR: Multimodal Place Recognition Using 3D Gaussian Splatting for Autonomous Driving [9.023864430027333]
我々はGPSRと呼ばれる3次元ガウススプラッティングに基づくマルチモーダル位置認識ネットワークを提案する。
マルチビューRGB画像とLiDAR点雲を時間的に統一されたシーン表現とMultimodal Gaussian Splattingを明示的に組み合わせている。
提案手法は,多視点カメラとLiDARの相補的強度を有効活用し,ソタ位置認識性能を向上し,ソタ位置認識性能を向上する。
論文 参考訳(メタデータ) (2024-10-01T00:43:45Z) - OverlapMamba: Novel Shift State Space Model for LiDAR-based Place Recognition [10.39935021754015]
位置認識のための新しいネットワークであるOverlapMambaを開発した。
本手法は,以前に訪れた場所を異なる方向から横断する場合でも,ループの閉鎖を効果的に検出する。
生のレンジビューの入力に基づいて、典型的なLiDARと複数ビューの組み合わせ法を時間的複雑さと速度で上回っている。
論文 参考訳(メタデータ) (2024-05-13T17:46:35Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
我々は、異なるLiDARスキャンからレーザービーム操作を統合するフレームワークであるLaserMix++を導入し、データ効率の学習を支援するためにLiDAR-カメラ対応を組み込んだ。
結果は、LaserMix++が完全に教師付き代替よりも優れており、5倍のアノテーションで同等の精度を実現していることを示している。
この大幅な進歩は、LiDARベースの3Dシーン理解システムにおける広範囲なラベル付きデータへの依存を減らすための半教師付きアプローチの可能性を示している。
論文 参考訳(メタデータ) (2024-05-08T17:59:53Z) - Recognize Any Regions [55.76437190434433]
RegionSpotは、ローカライゼーション基盤モデルから位置認識ローカライゼーション知識と、ViLモデルからのセマンティック情報を統合する。
オープンワールドオブジェクト認識の実験では、私たちのRereaSpotは、以前の代替よりも大きなパフォーマンス向上を実現しています。
論文 参考訳(メタデータ) (2023-11-02T16:31:49Z) - RaLF: Flow-based Global and Metric Radar Localization in LiDAR Maps [8.625083692154414]
我々は、環境のLiDARマップにレーダースキャンをローカライズするための、新しいディープニューラルネットワークベースのアプローチであるRaLFを提案する。
RaLFは、レーダーとLiDAR機能エンコーダ、グローバルなディスクリプタを生成する場所認識ヘッド、レーダースキャンとマップ間の3DF変換を予測するメートル法ローカライゼーションヘッドで構成されている。
複数の実世界の運転データセットに対する我々のアプローチを広く評価し、RaLFが位置認識とメートル法ローカライゼーションの両方において最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-09-18T15:37:01Z) - UnLoc: A Universal Localization Method for Autonomous Vehicles using
LiDAR, Radar and/or Camera Input [51.150605800173366]
UnLocは、全ての気象条件におけるマルチセンサー入力によるローカライズのための、新しい統一型ニューラルネットワークアプローチである。
本手法は,Oxford Radar RobotCar,Apollo SouthBay,Perth-WAの各データセットで広く評価されている。
論文 参考訳(メタデータ) (2023-07-03T04:10:55Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - Gait Recognition in Large-scale Free Environment via Single LiDAR [35.684257181154905]
深度を捉えるLiDARの能力は、ロボットの知覚にとって重要な要素であり、現実世界の歩行認識の可能性を秘めている。
本稿では,頑健な歩行認識のための階層型多表現特徴相互作用ネットワーク(HMRNet)を提案する。
LiDARに基づく歩行認識研究を容易にするため,大規模かつ制約のない歩行データセットであるFreeGaitを紹介した。
論文 参考訳(メタデータ) (2022-11-22T16:05:58Z) - FusionRCNN: LiDAR-Camera Fusion for Two-stage 3D Object Detection [11.962073589763676]
既存の3D検出器は、2段階のパラダイムを採用することで精度を大幅に向上させる。
特に遠く離れた地点では、点雲の広がりは、LiDARのみの精製モジュールがオブジェクトを正確に認識し、配置することを困難にしている。
We propose a novel multi-modality two-stage approach called FusionRCNN, which is effective and efficient fuses point clouds and camera image in the Regions of Interest(RoI)。
FusionRCNNは、強力なSECONDベースラインを6.14%のmAPで大幅に改善し、競合する2段階アプローチよりも優れている。
論文 参考訳(メタデータ) (2022-09-22T02:07:25Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
本稿では,LiDAR 画像検出器に追従する特徴や応答をシミュレートすることで,単一モダリティ (LiDAR) 3次元物体検出器を高速化する新しい手法を提案する。
このアプローチでは、単一モダリティ検出器をトレーニングする場合のみ、LiDARイメージデータを必要とし、十分にトレーニングされた場合には、推論時にのみLiDARデータが必要である。
nuScenesデータセットの実験結果から,本手法はSOTA LiDARのみの3D検出器よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-06-30T01:44:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。