Ethical Challenges of Using Artificial Intelligence in Judiciary
- URL: http://arxiv.org/abs/2504.19284v1
- Date: Sun, 27 Apr 2025 15:51:56 GMT
- Title: Ethical Challenges of Using Artificial Intelligence in Judiciary
- Authors: Angel Mary John, Aiswarya M. U., Jerrin Thomas Panachakel,
- Abstract summary: AI has the potential to revolutionize the functioning of the judiciary and the dispensation of justice.<n>Courts around the world have begun embracing AI technology as a means to enhance the administration of justice.<n>However, the use of AI in the judiciary poses a range of ethical challenges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) has emerged as a ubiquitous concept in numerous domains, including the legal system. AI has the potential to revolutionize the functioning of the judiciary and the dispensation of justice. Incorporating AI into the legal system offers the prospect of enhancing decision-making for judges, lawyers, and legal professionals, while concurrently providing the public with more streamlined, efficient, and cost-effective services. The integration of AI into the legal landscape offers manifold benefits, encompassing tasks such as document review, legal research, contract analysis, case prediction, and decision-making. By automating laborious and error-prone procedures, AI has the capacity to alleviate the burden associated with these arduous tasks. Consequently, courts around the world have begun embracing AI technology as a means to enhance the administration of justice. However, alongside its potential advantages, the use of AI in the judiciary poses a range of ethical challenges. These ethical quandaries must be duly addressed to ensure the responsible and equitable deployment of AI systems. This article delineates the principal ethical challenges entailed in employing AI within the judiciary and provides recommendations to effectively address these issues.
Related papers
- Tasks and Roles in Legal AI: Data Curation, Annotation, and Verification [4.099848175176399]
The application of AI tools to the legal field feels natural.<n>However, legal documents differ from the web-based text that underlies most AI systems.<n>We identify three areas of special relevance to practitioners: data curation, data annotation, and output verification.
arXiv Detail & Related papers (2025-04-02T04:34:58Z) - Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
Agentic Artificial Intelligence (AI) can autonomously pursue long-term goals, make decisions, and execute complex, multi-turn.
This transition from advisory roles to proactive execution challenges established legal, economic, and creative frameworks.
We explore challenges in three interrelated domains: creativity and intellectual property, legal and ethical considerations, and competitive effects.
arXiv Detail & Related papers (2025-02-01T03:14:59Z) - Don't Kill the Baby: The Case for AI in Arbitration [0.0]
Article argues that the FAA allows parties to contractually choose AI-driven arbitration, despite traditional reservations.<n>By advocating for the use of AI in arbitration, it underscores the importance of respecting contractual autonomy.<n>Ultimately, it calls for a balanced, open-minded approach to AI in arbitration, recognizing its potential to enhance the efficiency, fairness, and flexibility of dispute resolution.
arXiv Detail & Related papers (2024-08-21T13:34:20Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - AI and Legal Argumentation: Aligning the Autonomous Levels of AI Legal
Reasoning [0.0]
Legal argumentation is a vital cornerstone of justice, underpinning an adversarial form of law.
Extensive research has attempted to augment or undertake legal argumentation via the use of computer-based automation including Artificial Intelligence (AI)
An innovative meta-approach is proposed to apply the Levels of Autonomy (LoA) of AI Legal Reasoning to the maturation of AI and Legal Argumentation (AILA)
arXiv Detail & Related papers (2020-09-11T22:05:40Z) - An Impact Model of AI on the Principles of Justice: Encompassing the
Autonomous Levels of AI Legal Reasoning [0.0]
It is argued that the infusion of AI into existing and future legal activities and the judicial structure needs to be undertaken by mindfully observing an alignment with the core principles of justice.
By examining the principles of justice across the Levels of Autonomy (LoA) of AI Legal Reasoning, the case is made that there is an ongoing tension underlying the efforts to develop and deploy AI.
arXiv Detail & Related papers (2020-08-26T22:56:41Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
Legal Artificial Intelligence (LegalAI) focuses on applying the technology of artificial intelligence, especially natural language processing, to benefit tasks in the legal domain.
This paper introduces the history, the current state, and the future directions of research in LegalAI.
arXiv Detail & Related papers (2020-04-25T14:45:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.