Marine Snow Removal Using Internally Generated Pseudo Ground Truth
- URL: http://arxiv.org/abs/2504.19289v1
- Date: Sun, 27 Apr 2025 16:08:00 GMT
- Title: Marine Snow Removal Using Internally Generated Pseudo Ground Truth
- Authors: Alexandra Malyugina, Guoxi Huang, Eduardo Ruiz, Benjamin Leslie, Nantheera Anantrasirichai,
- Abstract summary: Existing methods for removing marine snow are ineffective due to the lack of paired training data.<n>This paper proposes a novel enhancement framework that introduces a new approach for generating datasets paired from raw underwater videos.<n>The resulting dataset consists of paired images of generated snowy and snow, free underwater videos, enabling supervised training for video enhancement.
- Score: 44.44860723575667
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underwater videos often suffer from degraded quality due to light absorption, scattering, and various noise sources. Among these, marine snow, which is suspended organic particles appearing as bright spots or noise, significantly impacts machine vision tasks, particularly those involving feature matching. Existing methods for removing marine snow are ineffective due to the lack of paired training data. To address this challenge, this paper proposes a novel enhancement framework that introduces a new approach for generating paired datasets from raw underwater videos. The resulting dataset consists of paired images of generated snowy and snow, free underwater videos, enabling supervised training for video enhancement. We describe the dataset creation process, highlight its key characteristics, and demonstrate its effectiveness in enhancing underwater image restoration in the absence of ground truth.
Related papers
- A deep learning approach for marine snow synthesis and removal [55.86191108738564]
This paper proposes a novel method to reduce the marine snow interference using deep learning techniques.
We first synthesize realistic marine snow samples by training a Generative Adversarial Network (GAN) model.
We then train a U-Net model to perform marine snow removal as an image to image translation task.
arXiv Detail & Related papers (2023-11-27T07:19:41Z) - ScatterNeRF: Seeing Through Fog with Physically-Based Inverse Neural
Rendering [83.75284107397003]
We introduce ScatterNeRF, a neural rendering method which renders scenes and decomposes the fog-free background.
We propose a disentangled representation for the scattering volume and the scene objects, and learn the scene reconstruction with physics-inspired losses.
We validate our method by capturing multi-view In-the-Wild data and controlled captures in a large-scale fog chamber.
arXiv Detail & Related papers (2023-05-03T13:24:06Z) - Video Waterdrop Removal via Spatio-Temporal Fusion in Driving Scenes [53.16726447796844]
The waterdrops on windshields during driving can cause severe visual obstructions, which may lead to car accidents.
We propose an attention-based framework that fuses the representations from multiple frames to restore visual information occluded by waterdrops.
arXiv Detail & Related papers (2023-02-12T13:47:26Z) - Underwater enhancement based on a self-learning strategy and attention
mechanism for high-intensity regions [0.0]
Images acquired during underwater activities suffer from environmental properties of the water, such as turbidity and light attenuation.
Recent works related to underwater image enhancement, and based on deep learning approaches, tackle the lack of paired datasets generating synthetic ground-truth.
We present a self-supervised learning methodology for underwater image enhancement based on deep learning that requires no paired datasets.
arXiv Detail & Related papers (2022-08-04T19:55:40Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Medium Transmission Map Matters for Learning to Restore Real-World
Underwater Images [3.0980025155565376]
We introduce the media transmission map as guidance to assist in image enhancement.
The proposed method can achieve advanced results of 22.6 dB on the challenging Test-R90 with an impressive 30 times faster than the existing models.
arXiv Detail & Related papers (2022-03-17T16:13:52Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
We present a novel method for underwater image restoration based on unsupervised image-to-image translation framework.
Our proposed method leveraged contrastive learning and generative adversarial networks to maximize the mutual information between raw and restored images.
arXiv Detail & Related papers (2021-06-20T16:06:26Z) - Marine Snow Removal Benchmarking Dataset [9.117162374919715]
This paper introduces a new benchmarking dataset for marine snow removal of underwater images.
We mathematically model two typical types of marine snow from the observations of real underwater images.
We propose two marine snow removal tasks using the dataset and show the first benchmarking results of marine snow removal.
arXiv Detail & Related papers (2021-03-26T03:54:43Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
We propose a new robust adversarial learning framework via physics model based feedback control and domain adaptation mechanism for enhancing underwater images.
A new method for simulating underwater-like training dataset from RGB-D data by underwater image formation model is proposed.
Final enhanced results on synthetic and real underwater images demonstrate the superiority of the proposed method.
arXiv Detail & Related papers (2020-02-20T07:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.