ICL CIPHERS: Quantifying "Learning'' in In-Context Learning via Substitution Ciphers
- URL: http://arxiv.org/abs/2504.19395v1
- Date: Mon, 28 Apr 2025 00:05:29 GMT
- Title: ICL CIPHERS: Quantifying "Learning'' in In-Context Learning via Substitution Ciphers
- Authors: Zhouxiang Fang, Aayush Mishra, Muhan Gao, Anqi Liu, Daniel Khashabi,
- Abstract summary: We introduce ICL CIPHERS, a class of task reformulations based on substitution ciphers borrowed from classic cryptography.<n>In this approach, a subset of tokens in the in-context inputs are substituted with other (irrelevant) tokens, rendering English sentences less comprehensible to human eye.<n>We show that LLMs are better at solving ICL CIPHERS with BIJECTIVE mappings than the NON-BIJECTIVE (irreversible) baseline.
- Score: 20.65223270978325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have suggested that In-Context Learning (ICL) operates in dual modes, i.e. task retrieval (remember learned patterns from pre-training) and task learning (inference-time ``learning'' from demonstrations). However, disentangling these the two modes remains a challenging goal. We introduce ICL CIPHERS, a class of task reformulations based on substitution ciphers borrowed from classic cryptography. In this approach, a subset of tokens in the in-context inputs are substituted with other (irrelevant) tokens, rendering English sentences less comprehensible to human eye. However, by design, there is a latent, fixed pattern to this substitution, making it reversible. This bijective (reversible) cipher ensures that the task remains a well-defined task in some abstract sense, despite the transformations. It is a curious question if LLMs can solve ICL CIPHERS with a BIJECTIVE mapping, which requires deciphering the latent cipher. We show that LLMs are better at solving ICL CIPHERS with BIJECTIVE mappings than the NON-BIJECTIVE (irreversible) baseline, providing a novel approach to quantify ``learning'' in ICL. While this gap is small, it is consistent across the board on four datasets and six models. Finally, we examine LLMs' internal representations and identify evidence in their ability to decode the ciphered inputs.
Related papers
- Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding [71.01099784480597]
Large language models (LLMs) excel at a range of tasks through in-context learning (ICL)<n>We introduce In-Context Contrastive Decoding (ICCD), a novel method that emphasizes input-label mapping.<n>ICCD emphasizes input-label mapping by contrasting the output distributions between positive and negative in-context examples.
arXiv Detail & Related papers (2025-02-19T14:04:46Z) - Enhancing LLM Character-Level Manipulation via Divide and Conquer [74.55804812450164]
Large Language Models (LLMs) have demonstrated strong generalization capabilities across a wide range of natural language processing (NLP) tasks.<n>They exhibit notable weaknesses in character-level string manipulation, struggling with fundamental operations such as character deletion, insertion, and substitution.<n>We propose Character-Level Manipulation via Divide and Conquer, a novel approach designed to bridge the gap between token-level processing and character-level manipulation.
arXiv Detail & Related papers (2025-02-12T07:37:39Z) - Reasoning Over the Glyphs: Evaluation of LLM's Decipherment of Rare Scripts [0.6144680854063939]
We introduce a novel approach to construct a multimodal dataset of linguistic puzzles involving rare scripts.<n>We conduct experiments using prominent models, GPT-4o, Gemini, and Claude 3.5 Sonnet, on linguistic puzzles.<n>Our findings reveal the strengths and limitations of current AI methods in linguistic decipherment.
arXiv Detail & Related papers (2025-01-29T17:24:19Z) - LatentQA: Teaching LLMs to Decode Activations Into Natural Language [72.87064562349742]
We introduce LatentQA, the task of answering open-ended questions about model activations in natural language.<n>We propose Latent Interpretation Tuning (LIT), which finetunes a decoder LLM on a dataset of activations and associated question-answer pairs.<n>Our decoder also specifies a differentiable loss that we use to control models, such as debiasing models on stereotyped sentences and controlling the sentiment of generations.
arXiv Detail & Related papers (2024-12-11T18:59:33Z) - Language Models are Symbolic Learners in Arithmetic [8.34588487873447]
Large Language Models (LLMs) are thought to struggle with arithmetic learning due to inherent differences between language modeling and numerical computation.
We first investigate whether LLMs leverage partial products during arithmetic learning.
We find that although LLMs can identify some partial products after learning, they fail to leverage them for arithmetic tasks, conversely.
arXiv Detail & Related papers (2024-10-21T01:57:16Z) - Sparse Autoencoders Reveal Temporal Difference Learning in Large Language Models [7.115323364355489]
In-context learning, the ability to adapt based on a few examples in the input prompt, is a ubiquitous feature of large language models (LLMs)
We first show that Llama $3$ $70$B can solve simple RL problems in-context.
We then analyze the residual stream of Llama using Sparse Autoencoders (SAEs) and find representations that closely match temporal difference (TD) errors.
arXiv Detail & Related papers (2024-10-02T06:51:12Z) - Get my drift? Catching LLM Task Drift with Activation Deltas [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - Identifying and Analyzing Performance-Critical Tokens in Large Language Models [52.404072802235234]
We study how large language models learn to perform tasks from demonstrations.<n>Our work sheds light on how large language models learn to perform tasks from demonstrations and deepens our understanding of the roles different types of tokens play in large language models.
arXiv Detail & Related papers (2024-01-20T20:55:21Z) - Making Large Language Models A Better Foundation For Dense Retrieval [19.38740248464456]
Dense retrieval needs to learn discriminative text embeddings to represent the semantic relationship between query and document.
It may benefit from the using of large language models (LLMs), given LLMs' strong capability on semantic understanding.
We propose LLaRA (LLM adapted for dense RetrievAl), which works as a post-hoc adaptation of dense retrieval application.
arXiv Detail & Related papers (2023-12-24T15:10:35Z) - ML-LMCL: Mutual Learning and Large-Margin Contrastive Learning for
Improving ASR Robustness in Spoken Language Understanding [55.39105863825107]
We propose Mutual Learning and Large-Margin Contrastive Learning (ML-LMCL) to improve automatic speech recognition (ASR) robustness.
In fine-tuning, we apply mutual learning and train two SLU models on the manual transcripts and the ASR transcripts, respectively.
Experiments on three datasets show that ML-LMCL outperforms existing models and achieves new state-of-the-art performance.
arXiv Detail & Related papers (2023-11-19T16:53:35Z) - Exploring In-Context Learning of Textless Speech Language Model for Speech Classification Tasks [98.5311231450689]
In-context learning (ICL) has played an essential role in utilizing large language models (LLMs)
This study is the first work exploring ICL for speech classification tasks with textless speech LM.
arXiv Detail & Related papers (2023-10-19T05:31:45Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
Large Language Models (LLMs) encode meanings of words in the form of distributed semantics.
Recent studies have shown that LLMs tend to generate unintended, inconsistent, or wrong texts as outputs.
We propose a novel ensemble learning method, Interpretable Ensemble Representation Learning (IERL), that systematically combines LLM and crowdsourced knowledge representations.
arXiv Detail & Related papers (2023-06-24T05:02:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.