Boosting 3D Liver Shape Datasets with Diffusion Models and Implicit Neural Representations
- URL: http://arxiv.org/abs/2504.19402v1
- Date: Mon, 28 Apr 2025 00:56:18 GMT
- Title: Boosting 3D Liver Shape Datasets with Diffusion Models and Implicit Neural Representations
- Authors: Khoa Tuan Nguyen, Francesca Tozzi, Wouter Willaert, Joris Vankerschaver, Nikdokht Rashidian, Wesley De Neve,
- Abstract summary: We propose a solution using diffusion models combined with implicit neural representations (INRs) to augment and expand existing datasets.<n>Our approach utilizes the generative capabilities of diffusion models to create realistic, diverse 3D liver shapes.
- Score: 0.7106122418396085
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While the availability of open 3D medical shape datasets is increasing, offering substantial benefits to the research community, we have found that many of these datasets are, unfortunately, disorganized and contain artifacts. These issues limit the development and training of robust models, particularly for accurate 3D reconstruction tasks. In this paper, we examine the current state of available 3D liver shape datasets and propose a solution using diffusion models combined with implicit neural representations (INRs) to augment and expand existing datasets. Our approach utilizes the generative capabilities of diffusion models to create realistic, diverse 3D liver shapes, capturing a wide range of anatomical variations and addressing the problem of data scarcity. Experimental results indicate that our method enhances dataset diversity, providing a scalable solution to improve the accuracy and reliability of 3D liver reconstruction and generation in medical applications. Finally, we suggest that diffusion models can also be applied to other downstream tasks in 3D medical imaging.
Related papers
- Introducing 3D Representation for Medical Image Volume-to-Volume Translation via Score Fusion [3.3559609260669303]
We present Score-Fusion, a novel volumetric translation model that effectively learns 3D representations by ensembling perpendicularly trained 2D diffusion models in score function space.
We show that Score-Fusion achieves superior accuracy and volumetric fidelity in 3D medical image super-resolution and modality translation.
arXiv Detail & Related papers (2025-01-13T15:54:21Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.<n>We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - Diffusion Models in 3D Vision: A Survey [18.805222552728225]
3D vision has become a crucial field within computer vision, powering a range of applications such as autonomous driving, robotics, augmented reality, and medical imaging.<n>We review the state-of-the-art methods that use diffusion models for 3D visual tasks, including but not limited to 3D object generation, shape completion, point-cloud reconstruction, and scene construction.<n>We discuss potential solutions, including improving computational efficiency, enhancing multimodal fusion, and exploring the use of large-scale pretraining for better generalization across 3D tasks.
arXiv Detail & Related papers (2024-10-07T04:12:23Z) - Generative Enhancement for 3D Medical Images [74.17066529847546]
We propose GEM-3D, a novel generative approach to the synthesis of 3D medical images.
Our method begins with a 2D slice, noted as the informed slice to serve the patient prior, and propagates the generation process using a 3D segmentation mask.
By decomposing the 3D medical images into masks and patient prior information, GEM-3D offers a flexible yet effective solution for generating versatile 3D images.
arXiv Detail & Related papers (2024-03-19T15:57:04Z) - VolumeDiffusion: Flexible Text-to-3D Generation with Efficient Volumetric Encoder [56.59814904526965]
This paper introduces a pioneering 3D encoder designed for text-to-3D generation.
A lightweight network is developed to efficiently acquire feature volumes from multi-view images.
The 3D volumes are then trained on a diffusion model for text-to-3D generation using a 3D U-Net.
arXiv Detail & Related papers (2023-12-18T18:59:05Z) - Three-dimensional Bone Image Synthesis with Generative Adversarial
Networks [2.499907423888049]
This work demonstrates that three-dimensional generative adversarial networks (GANs) can be efficiently trained to generate high-resolution medical volumes.
GAN inversion is successfully implemented for the three-dimensional setting and used for extensive research on model interpretability.
arXiv Detail & Related papers (2023-10-26T08:08:17Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - 3D Neural Field Generation using Triplane Diffusion [37.46688195622667]
We present an efficient diffusion-based model for 3D-aware generation of neural fields.
Our approach pre-processes training data, such as ShapeNet meshes, by converting them to continuous occupancy fields.
We demonstrate state-of-the-art results on 3D generation on several object classes from ShapeNet.
arXiv Detail & Related papers (2022-11-30T01:55:52Z) - Deep Generative Models on 3D Representations: A Survey [81.73385191402419]
Generative models aim to learn the distribution of observed data by generating new instances.
Recently, researchers started to shift focus from 2D to 3D space.
representing 3D data poses significantly greater challenges.
arXiv Detail & Related papers (2022-10-27T17:59:50Z) - Improved $\alpha$-GAN architecture for generating 3D connected volumes
with an application to radiosurgery treatment planning [0.5156484100374059]
We propose an improved version of 3D $alpha$-GAN for generating connected 3D volumes.
Our model can successfully generate high-quality 3D tumor volumes and associated treatment specifications.
The capability of improved 3D $alpha$-GAN makes it a valuable source for generating synthetic medical image data.
arXiv Detail & Related papers (2022-07-13T16:39:47Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.