論文の概要: Graph-based Semi-supervised and Unsupervised Methods for Local Clustering
- arxiv url: http://arxiv.org/abs/2504.19419v1
- Date: Mon, 28 Apr 2025 02:10:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.287581
- Title: Graph-based Semi-supervised and Unsupervised Methods for Local Clustering
- Title(参考訳): グラフに基づく局所クラスタリングのための半教師なし・非教師なし手法
- Authors: Zhaiming Shen, Sung Ha Kang,
- Abstract要約: 局所クラスタリングは、グラフ全体の知識を必要とせずに、大きなグラフ内の特定のサブ構造を特定することを目的としている。
まず,ラベル付きデータが少ない場合に特定局所クラスタを特定する手法を提案し,これを半教師付き局所クラスタリングと呼ぶ。
次に、ラベルに関する事前情報がない場合に、このアプローチを教師なしの設定に拡張します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local clustering aims to identify specific substructures within a large graph without requiring full knowledge of the entire graph. These substructures are typically small compared to the overall graph, enabling the problem to be approached by finding a sparse solution to a linear system associated with the graph Laplacian. In this work, we first propose a method for identifying specific local clusters when very few labeled data is given, which we term semi-supervised local clustering. We then extend this approach to the unsupervised setting when no prior information on labels is available. The proposed methods involve randomly sampling the graph, applying diffusion through local cluster extraction, then examining the overlap among the results to find each cluster. We establish the co-membership conditions for any pair of nodes and rigorously prove the correctness of our methods. Additionally, we conduct extensive experiments to demonstrate that the proposed methods achieve state-of-the-arts results in the low-label rates regime.
- Abstract(参考訳): 局所クラスタリングは、グラフ全体の知識を必要とせずに、大きなグラフ内の特定のサブ構造を特定することを目的としている。
これらの部分構造は一般に全体グラフと比較して小さく、グラフラプラシアンに関連付けられた線形系に対するスパース解を見つけることで問題にアプローチすることができる。
本研究ではまず,ラベル付きデータが少ない場合に特定局所クラスタを特定する手法を提案し,これを半教師付き局所クラスタリングと呼ぶ。
次に、ラベルに関する事前情報がない場合に、このアプローチを教師なしの設定に拡張します。
提案手法は, グラフをランダムにサンプリングし, 局所クラスタ抽出による拡散を適用し, 結果の重複を検証し, 各クラスタを探索する。
我々は,任意のノードの共構成条件を確立し,その正しさを厳格に証明する。
さらに,提案手法が低ラベルレートのシステムにおいて,最先端の手法が達成できることを実証するために,広範な実験を行った。
関連論文リスト
- Clustering Based on Density Propagation and Subcluster Merging [92.15924057172195]
本稿では,クラスタ数を自動的に決定し,データ空間とグラフ空間の両方に適用可能な密度に基づくノードクラスタリング手法を提案する。
二つのノード間の距離を計算する従来の密度クラスタリング法とは異なり,提案手法は伝播過程を通じて密度を決定する。
論文 参考訳(メタデータ) (2024-11-04T04:09:36Z) - TANGO: Clustering with Typicality-Aware Nonlocal Mode-Seeking and Graph-Cut Optimization [2.4783546111391215]
モード探索による密度に基づくクラスタリング手法は通常,局所密度推定を用いて構造情報のマイニングによってクラスタリングを実現する。
本稿では,グローバルな視点の特異性を利用して局所的依存関係を確立するアルゴリズム(TANGO)を提案する。
サブクラスタにグラフカットを使用することで、最終的なクラスタリングを実現しているため、クラスタセンターの選択が困難なことを回避することができる。
論文 参考訳(メタデータ) (2024-08-19T15:26:25Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Graph-based Semi-supervised Local Clustering with Few Labeled Nodes [6.493238575291165]
局所クラスタリングは、グラフ構造全体を知る必要なく、グラフ内の局所構造を抽出することを目的としている。
少数のラベル付きノードを用いた半教師付き局所クラスタリング手法を提案する。
論文 参考訳(メタデータ) (2022-11-20T22:55:07Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
我々は異常クラスタリングを導入し、その目標はデータを異常型の一貫性のあるクラスタにまとめることである。
これは異常検出とは違い、その目標は異常を通常のデータから分割することである。
パッチベースの事前訓練されたディープ埋め込みとオフザシェルフクラスタリング手法を用いた,単純で効果的なクラスタリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-21T23:11:33Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
データの局所構造とグローバル構造の両方を保存するためのグラフ学習フレームワークを提案する。
本手法は, サンプルの自己表現性を利用して, 局所構造を尊重するために, 大域的構造と適応的隣接アプローチを捉える。
我々のモデルは、ある条件下でのカーネルk平均法とk平均法の組合せと等価である。
論文 参考訳(メタデータ) (2020-08-31T08:41:20Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
局所グラフクラスタリングのためのネットワークLasso法の統計的および計算的性質について検討する。
nLassoによって提供されるクラスタは、クラスタ境界とシードノードの間のネットワークフローを通じて、エレガントに特徴付けられる。
論文 参考訳(メタデータ) (2020-04-25T17:52:05Z) - Incorporating User's Preference into Attributed Graph Clustering [14.082520165369885]
局所クラスタに対して,グラフ一様性(GU)と属性一様性(AU)の2つの品質尺度を提案する。
LOCLUによって検出された局所クラスタは、関心領域に集中し、グラフ内の効率的な情報フローを提供し、指定された属性のサブ空間に一様データ分布を示す。
論文 参考訳(メタデータ) (2020-03-24T19:07:22Z) - CycleCluster: Modernising Clustering Regularisation for Deep
Semi-Supervised Classification [0.0]
深層半教師付き分類のための新しいフレームワークであるCycleClusterを提案する。
我々のコア最適化は、グラフベースの擬似ラベルと共有深層ネットワークとともに、新たなクラスタリングベースの正規化によって推進されます。
論文 参考訳(メタデータ) (2020-01-15T13:34:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。