CLIP-KOA: Enhancing Knee Osteoarthritis Diagnosis with Multi-Modal Learning and Symmetry-Aware Loss Functions
- URL: http://arxiv.org/abs/2504.19443v1
- Date: Mon, 28 Apr 2025 03:10:24 GMT
- Title: CLIP-KOA: Enhancing Knee Osteoarthritis Diagnosis with Multi-Modal Learning and Symmetry-Aware Loss Functions
- Authors: Yejin Jeong, Donghun Lee,
- Abstract summary: We propose a CLIP-based framework (CLIP-KOA) to enhance the consistency and reliability of KOA grade prediction.<n>CLIP-KOA achieves state-of-the-art accuracy of 71.86% on KOA severity prediction task.
- Score: 2.9854771359202275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knee osteoarthritis (KOA) is a universal chronic musculoskeletal disorders worldwide, making early diagnosis crucial. Currently, the Kellgren and Lawrence (KL) grading system is widely used to assess KOA severity. However, its high inter-observer variability and subjectivity hinder diagnostic consistency. To address these limitations, automated diagnostic techniques using deep learning have been actively explored in recent years. In this study, we propose a CLIP-based framework (CLIP-KOA) to enhance the consistency and reliability of KOA grade prediction. To achieve this, we introduce a learning approach that integrates image and text information and incorporate Symmetry Loss and Consistency Loss to ensure prediction consistency between the original and flipped images. CLIP-KOA achieves state-of-the-art accuracy of 71.86\% on KOA severity prediction task, and ablation studies show that CLIP-KOA has 2.36\% improvement in accuracy over the standard CLIP model due to our contribution. This study shows a novel direction for data-driven medical prediction not only to improve reliability of fine-grained diagnosis and but also to explore multimodal methods for medical image analysis. Our code is available at https://github.com/anonymized-link.
Related papers
- Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.
We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.
We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Transforming Precision: A Comparative Analysis of Vision Transformers, CNNs, and Traditional ML for Knee Osteoarthritis Severity Diagnosis [0.5796283886869704]
This research investigates a comparative analysis between traditional machine learning techniques and new deep learning models for diagnosing KO severity from X-ray pictures.
The insights garnered from this comparative analysis advocate for the integration of advanced ViT models in clinical diagnostic.
The study utilizes an osteoarthritis dataset from the Osteoarthritis Initiative (OAI) comprising images with 5 severity categories and uneven class distribution.
arXiv Detail & Related papers (2024-10-26T03:58:58Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.<n>Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Identity-Consistent Diffusion Network for Grading Knee Osteoarthritis Progression in Radiographic Imaging [22.005283322766832]
Knee osteoarthritis (KOA) is a common form of arthritis that causes physical disability.
Computer-aided techniques to automatically assess KOA severity and progression can greatly benefit KOA treatment and disease management.
In this study, a novel generative model is proposed, namely Identity-Consistent Radiographic Diffusion Network (IC-RDN), for multifaceted KOA prognosis.
arXiv Detail & Related papers (2024-07-31T07:12:06Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Confidence-Driven Deep Learning Framework for Early Detection of Knee Osteoarthritis [8.193689534916988]
Knee Osteoarthritis (KOA) is a prevalent musculoskeletal disorder that severely impacts mobility and quality of life.<n>We propose a confidence-driven deep learning framework for early KOA detection, focusing on distinguishing KL-0 and KL-2 stages.<n> Experimental results demonstrate that the proposed framework achieves competitive accuracy, sensitivity, and specificity, comparable to those of expert radiologists.
arXiv Detail & Related papers (2023-03-23T11:57:50Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Coherence Learning using Keypoint-based Pooling Network for Accurately
Assessing Radiographic Knee Osteoarthritis [18.47511520060851]
Knee osteoarthritis (OA) is a common degenerate joint disorder that affects a large population of elderly people worldwide.
Current clinically-adopted knee OA grading systems are observer subjective and suffer from inter-rater disagreements.
We propose a computer-aided diagnosis approach to provide more accurate and consistent assessments of both composite and fine-grained OA grades simultaneously.
arXiv Detail & Related papers (2021-12-16T19:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.