FlashOverlap: A Lightweight Design for Efficiently Overlapping Communication and Computation
- URL: http://arxiv.org/abs/2504.19519v1
- Date: Mon, 28 Apr 2025 06:37:57 GMT
- Title: FlashOverlap: A Lightweight Design for Efficiently Overlapping Communication and Computation
- Authors: Ke Hong, Xiuhong Li, Minxu Liu, Qiuli Mao, Tianqi Wu, Zixiao Huang, Lufang Chen, Zhong Wang, Yichong Zhang, Zhenhua Zhu, Guohao Dai, Yu Wang,
- Abstract summary: We propose FlashOverlap, a lightweight design characterized by tile-wise overlapping, interference-free computation, and communication agnosticism.<n>Experiments show that such a lightweight design achieves up to 1.65x speedup, outperforming existing works in most cases.
- Score: 6.284874558004134
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative models have achieved remarkable success across various applications, driving the demand for multi-GPU computing. Inter-GPU communication becomes a bottleneck in multi-GPU computing systems, particularly on consumer-grade GPUs. By exploiting concurrent hardware execution, overlapping computation and communication latency is an effective technique for mitigating the communication overhead. We identify that an efficient and adaptable overlapping design should satisfy (1) tile-wise overlapping to maximize the overlapping opportunity, (2) interference-free computation to maintain the original computational performance, and (3) communication agnosticism to reduce the development burden against varying communication primitives. Nevertheless, current designs fail to simultaneously optimize for all of those features. To address the issue, we propose FlashOverlap, a lightweight design characterized by tile-wise overlapping, interference-free computation, and communication agnosticism. FlashOverlap utilizes a novel signaling mechanism to identify tile-wise data dependency without interrupting the computation process, and reorders data to contiguous addresses, enabling communication by simply calling NCCL APIs. Experiments show that such a lightweight design achieves up to 1.65x speedup, outperforming existing works in most cases.
Related papers
- Flash Communication: Reducing Tensor Parallelization Bottleneck for Fast Large Language Model Inference [14.805702987440512]
We introduce Flash Communication, a novel low-bit compression technique designed to alleviate the tensor-parallelism communication bottleneck during inference.
Our method substantially boosts intra-node communication speed by more than 3x and reduces the time-to-first-token by 2x, with nearly no sacrifice in model accuracy.
arXiv Detail & Related papers (2024-12-06T11:29:32Z) - Benchmarking Edge AI Platforms for High-Performance ML Inference [0.0]
Edge computing's growing prominence, due to its ability to reduce communication latency and enable real-time processing, is promoting the rise of high-performance, heterogeneous System-on-Chip solutions.
While current approaches often involve scaling down modern hardware, the performance characteristics of neural network workloads can vary significantly.
We compare the latency and throughput of various linear algebra and neural network inference tasks across CPU-only, CPU/GPU, and CPU/NPU integrated solutions.
arXiv Detail & Related papers (2024-09-23T08:27:27Z) - FLUX: Fast Software-based Communication Overlap On GPUs Through Kernel Fusion [9.5114389643299]
This paper proposes a novel method, Flux, to significantly hide communication latencies with dependent computations for GPUs.
Flux can potentially overlap up to 96% of communication given a fused kernel.
Overall, it can achieve up to 1.24x speedups for training over Megatron-LM on a cluster of 128 GPU with various GPU generations and interconnects.
arXiv Detail & Related papers (2024-06-11T00:17:39Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
We envision a decentralized system unlocking the potential vast untapped consumer-level GPU.
This system faces critical challenges, including limited CPU and GPU memory, low network bandwidth, the variability of peer and device heterogeneity.
arXiv Detail & Related papers (2023-09-03T13:27:56Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNet is a framework to bridge the theoretical and practical efficiency gap in dynamic networks.
It integrates three primary dynamic paradigms-spatially adaptive computation, dynamic layer skipping, and dynamic channel skipping.
It can notably reduce the latency of models like ResNet by over 50% on platforms such as V100,3090, and TX2 GPUs.
arXiv Detail & Related papers (2023-08-30T10:57:41Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Communication-Efficient TeraByte-Scale Model Training Framework for
Online Advertising [32.5337643852876]
Click-Through Rate (CTR) prediction is a crucial component in the online advertising industry.
We identify two major challenges in the existing GPU training for massivescale ad models.
We propose a hardware-aware training workflow that couples the hardware topology into the algorithm design.
arXiv Detail & Related papers (2022-01-05T18:09:11Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
We will mainly focus on collaborative training across wireless devices.
Many distributed optimization algorithms have been developed over the last decades.
They provide data locality; that is, a joint model can be trained collaboratively while the data available at each participating device remains local.
arXiv Detail & Related papers (2021-12-07T20:15:39Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
We study training algorithms for deep learning on heterogeneous CPU+GPU architectures.
Our two-fold objective -- maximize convergence rate and resource utilization simultaneously -- makes the problem challenging.
We show that the implementation of these algorithms achieves both faster convergence and higher resource utilization than on several real datasets.
arXiv Detail & Related papers (2020-04-19T05:21:20Z) - Straggler-aware Distributed Learning: Communication Computation Latency
Trade-off [56.08535873173518]
Straggling workers can be tolerated by assigning redundant computations and coding across data and computations.
In most existing schemes, each non-straggling worker transmits one message per iteration to the parameter server (PS) after completing all its computations.
Imposing such a limitation results in two main drawbacks; over-computation due to inaccurate prediction of the straggling behaviour, and under-utilization due to treating workers as straggler/non-straggler.
arXiv Detail & Related papers (2020-04-10T08:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.