LR-IAD:Mask-Free Industrial Anomaly Detection with Logical Reasoning
- URL: http://arxiv.org/abs/2504.19524v1
- Date: Mon, 28 Apr 2025 06:52:35 GMT
- Title: LR-IAD:Mask-Free Industrial Anomaly Detection with Logical Reasoning
- Authors: Peijian Zeng, Feiyan Pang, Zhanbo Wang, Aimin Yang,
- Abstract summary: Industrial Anomaly Detection (IAD) is critical for ensuring product quality by identifying defects.<n>Existing vision-language models (VLMs) and Multimodal Large Language Models (MLLMs) address some limitations but rely on mask annotations.<n>We propose a reward function that dynamically prioritizes rare defect patterns during training to handle class imbalance.
- Score: 1.3124513975412255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Industrial Anomaly Detection (IAD) is critical for ensuring product quality by identifying defects. Traditional methods such as feature embedding and reconstruction-based approaches require large datasets and struggle with scalability. Existing vision-language models (VLMs) and Multimodal Large Language Models (MLLMs) address some limitations but rely on mask annotations, leading to high implementation costs and false positives. Additionally, industrial datasets like MVTec-AD and VisA suffer from severe class imbalance, with defect samples constituting only 23.8% and 11.1% of total data respectively. To address these challenges, we propose a reward function that dynamically prioritizes rare defect patterns during training to handle class imbalance. We also introduce a mask-free reasoning framework using Chain of Thought (CoT) and Group Relative Policy Optimization (GRPO) mechanisms, enabling anomaly detection directly from raw images without annotated masks. This approach generates interpretable step-by-step explanations for defect localization. Our method achieves state-of-the-art performance, outperforming prior approaches by 36% in accuracy on MVTec-AD and 16% on VisA. By eliminating mask dependency and reducing costs while providing explainable outputs, this work advances industrial anomaly detection and supports scalable quality control in manufacturing. Code to reproduce the experiment is available at https://github.com/LilaKen/LR-IAD.
Related papers
- AnomalyR1: A GRPO-based End-to-end MLLM for Industrial Anomaly Detection [40.34270276536052]
Industrial Anomaly Detection (IAD) poses a formidable challenge due to the scarcity of defective samples.<n>Traditional approaches, often constrained by hand-crafted features or domain-specific expert models, struggle to address this limitation.<n>We introduce AnomalyR1, a pioneering framework that leverages VLM-R1, a Multimodal Large Language Model (MLLM) renowned for its exceptional generalization and interpretability.
arXiv Detail & Related papers (2025-04-16T09:48:41Z) - Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs [60.881609323604685]
Large Language Models (LLMs) accessed via black-box APIs introduce a trust challenge.<n>Users pay for services based on advertised model capabilities.<n> providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs.<n>This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking.
arXiv Detail & Related papers (2025-04-07T03:57:41Z) - EIAD: Explainable Industrial Anomaly Detection Via Multi-Modal Large Language Models [23.898938659720503]
Industrial Anomaly Detection (IAD) is critical to ensure product quality during manufacturing.<n>We propose a novel approach that introduces a dedicated multi-modal defect localization module to decouple the dialog functionality from the core feature extraction.<n>We also contribute to the first multi-modal industrial anomaly detection training dataset, named Defect Detection Question Answering (DDQA)
arXiv Detail & Related papers (2025-03-18T11:33:29Z) - Triad: Empowering LMM-based Anomaly Detection with Vision Expert-guided Visual Tokenizer and Manufacturing Process [67.99194145865165]
We modify the AnyRes structure of the LLaVA model to provide the potential anomalous areas identified by existing IAD models to the LMMs.<n>Considering that the generation of defects is closely related to the manufacturing process, we propose a manufacturing-driven IAD paradigm.<n>We present Triad, a novel LMM-based method incorporating an expert-guided region-of-interest tokenizer and manufacturing process.
arXiv Detail & Related papers (2025-03-17T13:56:57Z) - Mask Factory: Towards High-quality Synthetic Data Generation for Dichotomous Image Segmentation [70.95380821618711]
Dichotomous Image (DIS) tasks require highly precise annotations.<n>Current generative models and techniques struggle with the issues of scene deviations, noise-induced errors, and limited training sample variability.<n>We introduce a novel approach, which provides a scalable solution for generating diverse and precise datasets.
arXiv Detail & Related papers (2024-12-26T06:37:25Z) - VMAD: Visual-enhanced Multimodal Large Language Model for Zero-Shot Anomaly Detection [19.79027968793026]
Zero-shot anomaly detection (ZSAD) recognizes and localizes anomalies in previously unseen objects.
Existing ZSAD methods are limited by closed-world settings, struggling to unseen defects with predefined prompts.
We propose a novel framework VMAD (Visual-enhanced MLLM Anomaly Detection) that enhances MLLM with visual-based IAD knowledge and fine-grained perception.
arXiv Detail & Related papers (2024-09-30T09:51:29Z) - AnomalySD: Few-Shot Multi-Class Anomaly Detection with Stable Diffusion Model [7.942354689705658]
Anomaly detection is a critical task in industrial manufacturing, aiming to identify defective parts of products.
Most industrial anomaly detection methods assume the availability of sufficient normal data for training.
We propose a few-shot multi-class anomaly detection framework that adopts Stable Diffusion model.
arXiv Detail & Related papers (2024-08-04T08:33:44Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Continual-MAE: Adaptive Distribution Masked Autoencoders for Continual Test-Time Adaptation [49.827306773992376]
Continual Test-Time Adaptation (CTTA) is proposed to migrate a source pre-trained model to continually changing target distributions.
Our proposed method attains state-of-the-art performance in both classification and segmentation CTTA tasks.
arXiv Detail & Related papers (2023-12-19T15:34:52Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.