Generate Aligned Anomaly: Region-Guided Few-Shot Anomaly Image-Mask Pair Synthesis for Industrial Inspection
- URL: http://arxiv.org/abs/2507.09619v1
- Date: Sun, 13 Jul 2025 12:56:59 GMT
- Title: Generate Aligned Anomaly: Region-Guided Few-Shot Anomaly Image-Mask Pair Synthesis for Industrial Inspection
- Authors: Yilin Lu, Jianghang Lin, Linhuang Xie, Kai Zhao, Yansong Qu, Shengchuan Zhang, Liujuan Cao, Rongrong Ji,
- Abstract summary: Anomaly inspection plays a vital role in industrial manufacturing, but the scarcity of anomaly samples limits the effectiveness of existing methods.<n>We propose Generate grained Anomaly (GAA), a region-guided, few-shot anomaly image-mask pair generation framework.<n>GAA generates realistic, diverse, and semantically aligned anomalies using only a small number of samples.
- Score: 53.137651284042434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly inspection plays a vital role in industrial manufacturing, but the scarcity of anomaly samples significantly limits the effectiveness of existing methods in tasks such as localization and classification. While several anomaly synthesis approaches have been introduced for data augmentation, they often struggle with low realism, inaccurate mask alignment, and poor generalization. To overcome these limitations, we propose Generate Aligned Anomaly (GAA), a region-guided, few-shot anomaly image-mask pair generation framework. GAA leverages the strong priors of a pretrained latent diffusion model to generate realistic, diverse, and semantically aligned anomalies using only a small number of samples. The framework first employs Localized Concept Decomposition to jointly model the semantic features and spatial information of anomalies, enabling flexible control over the type and location of anomalies. It then utilizes Adaptive Multi-Round Anomaly Clustering to perform fine-grained semantic clustering of anomaly concepts, thereby enhancing the consistency of anomaly representations. Subsequently, a region-guided mask generation strategy ensures precise alignment between anomalies and their corresponding masks, while a low-quality sample filtering module is introduced to further improve the overall quality of the generated samples. Extensive experiments on the MVTec AD and LOCO datasets demonstrate that GAA achieves superior performance in both anomaly synthesis quality and downstream tasks such as localization and classification.
Related papers
- SARD: Segmentation-Aware Anomaly Synthesis via Region-Constrained Diffusion with Discriminative Mask Guidance [4.65786322515141]
We propose SARD (Segmentation-Aware anomaly synthesis via Region-constrained Diffusion with discriminative mask Guidance), a novel diffusion-based framework specifically designed for anomaly generation.<n>SARD surpasses existing methods in segmentation accuracy and visual quality, setting a new state-of-the-art for pixel-level anomaly synthesis.
arXiv Detail & Related papers (2025-08-05T06:43:01Z) - CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types, and the scarcity of training data.<n>We propose CLIPfusion, a method that leverages both discriminative and generative foundation models.<n>We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection.
arXiv Detail & Related papers (2025-06-13T13:30:15Z) - Strengthening Anomaly Awareness [0.0]
We present a refined version of the Anomaly Awareness framework for enhancing unsupervised anomaly detection.<n>Our approach introduces minimal supervision into Variational Autoencoders (VAEs) through a two-stage training strategy.
arXiv Detail & Related papers (2025-04-15T16:52:22Z) - Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
In unsupervised anomaly detection (UAD) research, it is necessary to develop a computationally efficient and scalable solution.
We revisit the reconstruction-by-inpainting approach and rethink to improve it by analyzing strengths and weaknesses.
We propose Feature Attenuation of Defective Representation (FADeR) that only employs two layers which attenuates feature information of anomaly reconstruction.
arXiv Detail & Related papers (2024-07-05T15:44:53Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
Diffusion models tend to reconstruct normal counterparts of test images with certain noises added.
From the global perspective, the difficulty of reconstructing images with different anomalies is uneven.
We propose a global and local adaptive diffusion model (abbreviated to GLAD) for unsupervised anomaly detection.
arXiv Detail & Related papers (2024-06-11T17:27:23Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
We develop a unified model to detect anomalies from objects belonging to multiple classes when only normal data is accessible.
We first explore the generative-based approach and investigate latent diffusion models for reconstruction.
We introduce a feature editing strategy that modifies the input feature space of the diffusion model to further alleviate identity shortcuts''
arXiv Detail & Related papers (2023-07-16T14:41:22Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.