論文の概要: Identification and Estimation of Long-Term Treatment Effects with Monotone Missing
- arxiv url: http://arxiv.org/abs/2504.19527v1
- Date: Mon, 28 Apr 2025 07:07:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.346176
- Title: Identification and Estimation of Long-Term Treatment Effects with Monotone Missing
- Title(参考訳): モノトン欠失による長期治療効果の同定と評価
- Authors: Qinwei Yang, Ruocheng Guo, Shasha Han, Peng Wu,
- Abstract要約: 単調な欠失は 早い段階で 行方不明になった個人が その後の段階で 行方不明のままだ
本稿では,逆確率重み付け,逐次回帰計算,逐次境界構造モデル(SeqMSM)の3つの新しい推定法を提案する。
SeqMSM法はモノトーン欠如による重大データ分散による高分散に悩まされる可能性があることを考慮し,新たなバランス強化手法である BalanceNet を提案し,評価手法の安定性と精度を向上する。
- 参考スコア(独自算出の注目度): 15.537799065957078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating long-term treatment effects has a wide range of applications in various domains. A key feature in this context is that collecting long-term outcomes typically involves a multi-stage process and is subject to monotone missing, where individuals missing at an earlier stage remain missing at subsequent stages. Despite its prevalence, monotone missing has been rarely explored in previous studies on estimating long-term treatment effects. In this paper, we address this gap by introducing the sequential missingness assumption for identification. We propose three novel estimation methods, including inverse probability weighting, sequential regression imputation, and sequential marginal structural model (SeqMSM). Considering that the SeqMSM method may suffer from high variance due to severe data sparsity caused by monotone missing, we further propose a novel balancing-enhanced approach, BalanceNet, to improve the stability and accuracy of the estimation methods. Extensive experiments on two widely used benchmark datasets demonstrate the effectiveness of our proposed methods.
- Abstract(参考訳): 長期治療効果の推定は、様々な領域で幅広い応用がある。
この文脈における重要な特徴は、長期的成果の収集は、通常、多段階的なプロセスが伴い、単調な欠失が伴う。
その頻度にもかかわらず、モノトン欠失は、長期治療効果を推定する以前の研究で研究されることはめったにない。
本稿では,識別のための逐次欠落仮定を導入することで,このギャップに対処する。
本稿では,逆確率重み付け,逐次回帰計算,逐次境界構造モデル(SeqMSM)の3つの新しい推定法を提案する。
SeqMSM法はモノトーン欠如による重大データ分散による高分散に悩まされる可能性があることを考慮し,新たなバランス強化手法である BalanceNet を提案し,評価手法の安定性と精度を向上する。
2つの広く利用されているベンチマークデータセットに対する大規模な実験により,提案手法の有効性が示された。
関連論文リスト
- General targeted machine learning for modern causal mediation analysis [3.813608775141218]
因果媒介分析は、その作用を引き起こすメカニズムを解明する。
媒介分析に対する6つの一般的な非パラメトリック手法の同定式は2つの統計的推定値から復元可能であることを示す。
我々は,任意の媒介研究において,機械学習と組み合わせることができる全目的の一段階推定アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-26T20:31:26Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Successive Model-Agnostic Meta-Learning for Few-Shot Fault Time Series
Prognosis [3.5573601621032944]
本稿では,連続した時系列をメタタスクとして扱う「擬似メタタスク」分割方式を提案する。
連続時系列を擬似メタタスクとして利用することで,データからより包括的な特徴や関係を抽出することができる。
異なるデータセットにまたがる手法の堅牢性を高めるための差分アルゴリズムを導入する。
論文 参考訳(メタデータ) (2023-11-04T02:07:47Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
限界確率はクロスバリデーションの指標を思い起こさせるべきであり、どちらもより大きな入力次元で劣化すべきである、と一般的に信じられている。
我々は,ハイパーパラメータをチューニングすることにより,入力次元と単調に改善できることを証明した。
また、クロスバリデーションの指標は、二重降下の特徴である質的に異なる挙動を示すことも証明した。
論文 参考訳(メタデータ) (2022-10-14T08:09:33Z) - Statistics and Deep Learning-based Hybrid Model for Interpretable
Anomaly Detection [0.0]
ハイブリッド手法は、予測タスクと予測タスクの両方において、純粋統計的および純粋深層学習法より優れていることが示されている。
MES-LSTMは、これらの課題を克服する解釈可能な異常検出モデルである。
論文 参考訳(メタデータ) (2022-02-25T14:17:03Z) - Long-term Causal Inference Under Persistent Confounding via Data Combination [38.026740610259225]
実験データと観測データの両方が利用可能である場合の長期治療効果の同定と推定について検討した。
長期の成果は長期間の遅延後にのみ観測されるため、実験データでは測定されず、観測データでのみ記録される。
論文 参考訳(メタデータ) (2022-02-15T07:44:20Z) - Adaptive Affinity Loss and Erroneous Pseudo-Label Refinement for Weakly
Supervised Semantic Segmentation [48.294903659573585]
本稿では,多段階アプローチの親和性学習を単一段階モデルに組み込むことを提案する。
深層ニューラルネットワークは、トレーニングフェーズで包括的なセマンティック情報を提供するために使用される。
提案手法の有効性を評価するため,PASCAL VOC 2012データセットを用いて実験を行った。
論文 参考訳(メタデータ) (2021-08-03T07:48:33Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Bayesian Uncertainty Estimation of Learned Variational MRI
Reconstruction [63.202627467245584]
我々は,モデル不連続な不確かさを定量化するベイズ変分フレームワークを提案する。
提案手法はMRIのアンダーサンプを用いた再建術の術後成績を示す。
論文 参考訳(メタデータ) (2021-02-12T18:08:14Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
アルツハイマー病(Alzheimer's disease, AD)は認知症の主要な原因の一つであり、数年間の進行が遅いことが特徴である。
本稿では,MRIバイオマーカーの表現型測定と臨床状態の軌跡を予測できる新しい計算フレームワークを提案する。
論文 参考訳(メタデータ) (2020-05-06T08:08:00Z) - Batch Stationary Distribution Estimation [98.18201132095066]
サンプル遷移の組を与えられたエルゴードマルコフ鎖の定常分布を近似する問題を考える。
与えられたデータに対する補正比関数の復元に基づく一貫した推定器を提案する。
論文 参考訳(メタデータ) (2020-03-02T09:10:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。