m-KAILIN: Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
- URL: http://arxiv.org/abs/2504.19565v1
- Date: Mon, 28 Apr 2025 08:18:24 GMT
- Title: m-KAILIN: Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
- Authors: Meng Xiao, Xunxin Cai, Chengrui Wang, Yuanchun Zhou,
- Abstract summary: We propose a knowledge-driven, multi-agent framework for scientific corpus distillation tailored for biomedical training.<n>Our approach is a collaborative multi-agent architecture, where specialized agents, each guided by the Medical Subject Headings (MeSH) hierarchy, work in concert to autonomously extract, synthesize, and self-evaluate high-quality data.
- Score: 8.238980609871042
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid progress of large language models (LLMs) in biomedical research has underscored the limitations of existing open-source annotated scientific corpora, which are often insufficient in quantity and quality. Addressing the challenge posed by the complex hierarchy of biomedical knowledge, we propose a knowledge-driven, multi-agent framework for scientific corpus distillation tailored for LLM training in the biomedical domain. Central to our approach is a collaborative multi-agent architecture, where specialized agents, each guided by the Medical Subject Headings (MeSH) hierarchy, work in concert to autonomously extract, synthesize, and self-evaluate high-quality textual data from vast scientific literature. These agents collectively generate and refine domain-specific question-answer pairs, ensuring comprehensive coverage and consistency with biomedical ontologies while minimizing manual involvement. Extensive experimental results show that language models trained on our multi-agent distilled datasets achieve notable improvements in biomedical question-answering tasks, outperforming both strong life sciences LLM baselines and advanced proprietary models. Notably, our AI-Ready dataset enables Llama3-70B to surpass GPT-4 with MedPrompt and Med-PaLM-2, despite their larger scale. Detailed ablation studies and case analyses further validate the effectiveness and synergy of each agent within the framework, highlighting the potential of multi-agent collaboration in biomedical LLM training.
Related papers
- TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic analysis (TA) is a widely used qualitative approach for uncovering latent meanings in unstructured text data.
Here, we propose TAMA: A Human-AI Collaborative Thematic Analysis framework using Multi-Agent LLMs for clinical interviews.
We demonstrate that TAMA outperforms existing LLM-assisted TA approaches, achieving higher thematic hit rate, coverage, and distinctiveness.
arXiv Detail & Related papers (2025-03-26T15:58:16Z) - Knowledge Hierarchy Guided Biological-Medical Dataset Distillation for Domain LLM Training [10.701353329227722]
We propose a framework that automates the distillation of high-quality textual training data from the extensive scientific literature.<n>Our approach self-evaluates and generates questions that are more closely aligned with the biomedical domain.<n>Our approach substantially improves question-answering tasks compared to pre-trained models from the life sciences domain.
arXiv Detail & Related papers (2025-01-25T07:20:44Z) - BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific Literature [73.39593644054865]
BIOMEDICA is a scalable, open-source framework to extract, annotate, and serialize the entirety of the PubMed Central Open Access subset into an easy-to-use, publicly accessible dataset.<n>Our framework produces a comprehensive archive with over 24 million unique image-text pairs from over 6 million articles.<n> BMCA-CLIP is a suite of CLIP-style models continuously pretrained on the BIOMEDICA dataset via streaming, eliminating the need to download 27 TB of data locally.
arXiv Detail & Related papers (2025-01-13T09:58:03Z) - Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
We introduce Biology-Instructions, the first large-scale multi-omics biological sequences-related instruction-tuning dataset.<n>This dataset can bridge the gap between large language models (LLMs) and complex biological sequences-related tasks.<n>We also develop a strong baseline called ChatMultiOmics with a novel three-stage training pipeline.
arXiv Detail & Related papers (2024-12-26T12:12:23Z) - Y-Mol: A Multiscale Biomedical Knowledge-Guided Large Language Model for Drug Development [24.5979645373074]
Y-Mol is a knowledge-guided LLM designed to accomplish tasks across lead compound discovery, pre-clinic, and clinic prediction.
It learns from a corpus of publications, knowledge graphs, and expert-designed synthetic data.
Y-Mol significantly outperforms general-purpose LLMs in discovering lead compounds, predicting molecular properties, and identifying drug interaction events.
arXiv Detail & Related papers (2024-10-15T12:39:20Z) - A Survey for Large Language Models in Biomedicine [31.719451674137844]
This review is based on an analysis of 484 publications sourced from databases including PubMed, Web of Science, and arXiv.
We explore the capabilities of LLMs in zero-shot learning across a broad spectrum of biomedical tasks, including diagnostic assistance, drug discovery, and personalized medicine.
We discuss the challenges that LLMs face in the biomedicine domain including data privacy concerns, limited model interpretability, issues with dataset quality, and ethics.
arXiv Detail & Related papers (2024-08-29T12:39:16Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized for medical texts.
Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts.
Our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-16T19:32:23Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Large Language Models, scientific knowledge and factuality: A framework to streamline human expert evaluation [0.0]
This work explores the potential of Large Language Models for dialoguing with biomedical background knowledge.
The framework involves of three evaluation steps, each assessing different aspects sequentially: fluency, prompt alignment, semantic coherence, factual knowledge, and specificity of the generated responses.
The work provides a systematic assessment on the ability of eleven state-of-the-art models LLMs, including ChatGPT, GPT-4 and Llama 2, in two prompting-based tasks.
arXiv Detail & Related papers (2023-05-28T22:46:21Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.