Hardware/Software Co-Design of RISC-V Extensions for Accelerating Sparse DNNs on FPGAs
- URL: http://arxiv.org/abs/2504.19659v1
- Date: Mon, 28 Apr 2025 10:19:39 GMT
- Title: Hardware/Software Co-Design of RISC-V Extensions for Accelerating Sparse DNNs on FPGAs
- Authors: Muhammad Sabih, Abrarul Karim, Jakob Wittmann, Frank Hannig, Jürgen Teich,
- Abstract summary: We propose novel RISC-V extensions for accelerating DNN models containing semi-structured and unstructured sparsity.<n>Our designs consume a small amount of additional FPGA resources such that the resulting co-designs enable the acceleration of DNNs even on small FPGAs.<n>We benchmark our designs on standard TinyML applications such as keyword spotting, image classification, and person detection.
- Score: 1.4225653519332482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The customizability of RISC-V makes it an attractive choice for accelerating deep neural networks (DNNs). It can be achieved through instruction set extensions and corresponding custom functional units. Yet, efficiently exploiting these opportunities requires a hardware/software co-design approach in which the DNN model, software, and hardware are designed together. In this paper, we propose novel RISC-V extensions for accelerating DNN models containing semi-structured and unstructured sparsity. While the idea of accelerating structured and unstructured pruning is not new, our novel design offers various advantages over other designs. To exploit semi-structured sparsity, we take advantage of the fine-grained (bit-level) configurability of FPGAs and suggest reserving a few bits in a block of DNN weights to encode the information about sparsity in the succeeding blocks. The proposed custom functional unit utilizes this information to skip computations. To exploit unstructured sparsity, we propose a variable cycle sequential multiply-and-accumulate unit that performs only as many multiplications as the non-zero weights. Our implementation of unstructured and semi-structured pruning accelerators can provide speedups of up to a factor of 3 and 4, respectively. We then propose a combined design that can accelerate both types of sparsities, providing speedups of up to a factor of 5. Our designs consume a small amount of additional FPGA resources such that the resulting co-designs enable the acceleration of DNNs even on small FPGAs. We benchmark our designs on standard TinyML applications such as keyword spotting, image classification, and person detection.
Related papers
- Hardware-Software Co-optimised Fast and Accurate Deep Reconfigurable Spiking Inference Accelerator Architecture Design Methodology [2.968768532937366]
Spiking Neural Networks (SNNs) have emerged as a promising approach to improve the energy efficiency of machine learning models.
We develop a hardware-software co-optimisation strategy to port software-trained deep neural networks (DNN) to reduced-precision spiking models.
arXiv Detail & Related papers (2024-10-07T05:04:13Z) - Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - Reconfigurable Distributed FPGA Cluster Design for Deep Learning
Accelerators [59.11160990637615]
We propose a distributed system based on lowpower embedded FPGAs designed for edge computing applications.
The proposed system can simultaneously execute diverse Neural Network (NN) models, arrange the graph in a pipeline structure, and manually allocate greater resources to the most computationally intensive layers of the NN graph.
arXiv Detail & Related papers (2023-05-24T16:08:55Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs)
This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow.
We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the Large Hadron Collider (LHC)
We implement an optimized mixed-precision NN for high-momentum particle jets in simulated LHC proton-proton collisions.
arXiv Detail & Related papers (2023-04-13T18:00:01Z) - Practical Conformer: Optimizing size, speed and flops of Conformer for
on-Device and cloud ASR [67.63332492134332]
We design an optimized conformer that is small enough to meet on-device restrictions and has fast inference on TPUs.
Our proposed encoder can double as a strong standalone encoder in on device, and as the first part of a high-performance ASR pipeline.
arXiv Detail & Related papers (2023-03-31T23:30:48Z) - HARFLOW3D: A Latency-Oriented 3D-CNN Accelerator Toolflow for HAR on
FPGA Devices [71.45672882756001]
This study introduces a novel streaming architecture based toolflow for mapping 3D Convolutional Neural Networks onto FPGAs.
The HARFLOW3D toolflow takes as input a 3D CNN in ONNX format and a description of the FPGA characteristics.
The ability of the toolflow to support a broad range of models and devices is shown through a number of experiments on various 3D CNN and FPGA system pairs.
arXiv Detail & Related papers (2023-03-30T08:25:27Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - N3H-Core: Neuron-designed Neural Network Accelerator via FPGA-based
Heterogeneous Computing Cores [26.38812379700231]
We develop an FPGA-based heterogeneous computing system for neural network acceleration.
The proposed accelerator consists of DSP- and LUT-based GEneral Matrix-Multiplication (GEMM) computing cores.
Our design outperforms the state-of-the-art Mix&Match design with latency reduced by 1.12-1.32x with higher inference accuracy.
arXiv Detail & Related papers (2021-12-15T15:12:00Z) - SECDA: Efficient Hardware/Software Co-Design of FPGA-based DNN
Accelerators for Edge Inference [0.0]
We propose SECDA, a new hardware/software co-design methodology to reduce design time of optimized Deep Neural Networks (DNN) inference accelerators on edge devices with FPGAs.
We use SECDA to efficiently develop two different DNN accelerator designs on a PYNQ-Z1 board, a platform that includes an edge FPGA.
We evaluate the two accelerator designs with four common DNN models, achieving an average performance speedup across models of up to 3.5$times$ with a 2.9$times$ reduction in energy consumption over CPU-only inference.
arXiv Detail & Related papers (2021-10-01T15:20:29Z) - unzipFPGA: Enhancing FPGA-based CNN Engines with On-the-Fly Weights
Generation [17.142094527372993]
Singlevolution engines have become a popular design choice for FPGA-based convolutional neural networks (CNNs)
In this work, we investigate the implications in terms of CNN engine design for a class of models that introduce a pre-con stage to decompress the weights at run time.
To minimise the negative impact of limited bandwidth on memory-bound layers, we present a novel hardware component that enables the on-the-fly generation of weights.
arXiv Detail & Related papers (2021-03-09T18:19:41Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.