A computer vision method to estimate ventilation rate of Atlantic salmon in sea fish farms
- URL: http://arxiv.org/abs/2504.19719v1
- Date: Mon, 28 Apr 2025 12:13:57 GMT
- Title: A computer vision method to estimate ventilation rate of Atlantic salmon in sea fish farms
- Authors: Lukas Folkman, Quynh LK Vo, Colin Johnston, Bela Stantic, Kylie A Pitt,
- Abstract summary: We have developed a computer vision method for monitoring ventilation rates of Atlantic salmon (Salmo salar)<n>Our approach uses a fish head detection model, which classifies the mouth state as either open or closed using a convolutional neural network.<n>By accurately identifying pens where fish exhibit signs of respiratory distress, our method offers broad applicability and the potential to transform fish health and welfare monitoring in finfish aquaculture.
- Score: 0.18807755325664796
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The increasing demand for aquaculture production necessitates the development of innovative, intelligent tools to effectively monitor and manage fish health and welfare. While non-invasive video monitoring has become a common practice in finfish aquaculture, existing intelligent monitoring methods predominantly focus on assessing body condition or fish swimming patterns and are often developed and evaluated in controlled tank environments, without demonstrating their applicability to real-world aquaculture settings in open sea farms. This underscores the necessity for methods that can monitor physiological traits directly within the production environment of sea fish farms. To this end, we have developed a computer vision method for monitoring ventilation rates of Atlantic salmon (Salmo salar), which was specifically designed for videos recorded in the production environment of commercial sea fish farms using the existing infrastructure. Our approach uses a fish head detection model, which classifies the mouth state as either open or closed using a convolutional neural network. This is followed with multiple object tracking to create temporal sequences of fish swimming across the field of view of the underwater video camera to estimate ventilation rates. The method demonstrated high efficiency, achieving a Pearson correlation coefficient of 0.82 between ground truth and predicted ventilation rates in a test set of 100 fish collected independently of the training data. By accurately identifying pens where fish exhibit signs of respiratory distress, our method offers broad applicability and the potential to transform fish health and welfare monitoring in finfish aquaculture.
Related papers
- Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments [57.59857784298534]
We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images.
This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes.
arXiv Detail & Related papers (2025-03-06T05:13:19Z) - ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics [14.935296890629795]
Oysters are a vital keystone species in coastal ecosystems, providing significant economic, environmental, and cultural benefits.<n>Current monitoring strategies often rely on destructive methods.<n>We propose a novel pipeline using stable diffusion to augment a collected real dataset with realistic synthetic data.
arXiv Detail & Related papers (2024-09-11T04:31:09Z) - A Computer Vision Approach to Estimate the Localized Sea State [45.498315114762484]
This research focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge.
The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale.
arXiv Detail & Related papers (2024-07-04T09:07:25Z) - Locating and measuring marine aquaculture production from space: a computer vision approach in the French Mediterranean [3.5300935402570395]
We train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery.
We generate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000-2021.
arXiv Detail & Related papers (2024-06-19T21:19:44Z) - Towards The Creation Of The Future Fish Farm [3.8176219403982126]
Fish farm environments support the care and management of seafood within a controlled environment.
New technologies are constantly being implemented in this sector to enhance efficiency.
This study demonstrates a proof-of-concept to signify the efficiency and usability of the future fish farm.
arXiv Detail & Related papers (2023-01-02T21:41:06Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
We propose an efficient computer vision- and deep learning-based method for the detection of biological behaviours in videos.
TempNet uses an encoder bridge and residual blocks to maintain model performance with a two-staged, spatial, then temporal, encoder.
We demonstrate its application to the detection of sablefish (Anoplopoma fimbria) startle events.
arXiv Detail & Related papers (2022-11-17T23:55:12Z) - Deep object detection for waterbird monitoring using aerial imagery [56.1262568293658]
In this work, we present a deep learning pipeline that can be used to precisely detect, count, and monitor waterbirds using aerial imagery collected by a commercial drone.
By utilizing convolutional neural network-based object detectors, we show that we can detect 16 classes of waterbird species that are commonly found in colonial nesting islands along the Texas coast.
arXiv Detail & Related papers (2022-10-10T17:37:56Z) - Automatic Controlling Fish Feeding Machine using Feature Extraction of
Nutriment and Ripple Behavior [0.0]
We propose automatic controlling fish feeding machine based on computer vision using combination of counting nutriments and estimating ripple behavior.
Based on the number of nutriments and ripple behavior, we can control fish feeding machine which consistently performs well in real environment.
arXiv Detail & Related papers (2022-08-15T05:52:37Z) - Towards Generating Large Synthetic Phytoplankton Datasets for Efficient
Monitoring of Harmful Algal Blooms [77.25251419910205]
Harmful algal blooms (HABs) cause significant fish deaths in aquaculture farms.
Currently, the standard method to enumerate harmful algae and other phytoplankton is to manually observe and count them under a microscope.
We employ Generative Adversarial Networks (GANs) to generate synthetic images.
arXiv Detail & Related papers (2022-08-03T20:15:55Z) - Spatial Distribution Patterns of Clownfish in Recirculating Aquaculture
Systems [0.4893345190925178]
We propose an efficient approach to analyze the spatial distribution status and motion patterns of juvenile clownfish maintained in aquaria.
The estimated displacement is the key factor in assessing the dispersion and velocity.
We test the system design on a database containing two days of video streams of juvenile clownfish maintained in aquaria.
arXiv Detail & Related papers (2021-12-29T11:39:56Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - Tuna Nutriment Tracking using Trajectory Mapping in Application to
Aquaculture Fish Tank [0.0]
Estimating a state of fishes in a tank and adjusting an amount of nutriments play an important role to manage cost of fish feeding system.
Our approach is based on tracking nutriments on videos collected from an active aquaculture fish farm.
arXiv Detail & Related papers (2021-03-10T06:02:19Z) - Movement Tracks for the Automatic Detection of Fish Behavior in Videos [63.85815474157357]
We offer a dataset of sablefish (Anoplopoma fimbria) startle behaviors in underwater videos, and investigate the use of deep learning (DL) methods for behavior detection on it.
Our proposed detection system identifies fish instances using DL-based frameworks, determines trajectory tracks, derives novel behavior-specific features, and employs Long Short-Term Memory (LSTM) networks to identify startle behavior in sablefish.
arXiv Detail & Related papers (2020-11-28T05:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.