A Computer Vision Approach to Estimate the Localized Sea State
- URL: http://arxiv.org/abs/2407.03755v2
- Date: Mon, 8 Jul 2024 14:05:29 GMT
- Title: A Computer Vision Approach to Estimate the Localized Sea State
- Authors: Aleksandar Vorkapic, Miran Pobar, Marina Ivasic-Kos,
- Abstract summary: This research focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge.
The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale.
- Score: 45.498315114762484
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This research presents a novel application of computer vision (CV) and deep learning methods for real-time sea state recognition, aiming to contribute to improving the operational safety and energy efficiency of seagoing vessels, key factors in meeting the legislative carbon reduction targets. Our work focuses on utilizing sea images in operational envelopes captured by a single stationary camera mounted on the ship bridge. The collected images are used to train a deep learning model to automatically recognize the state of the sea based on the Beaufort scale. To recognize the sea state, we used 4 state-of-the-art deep neural networks with different characteristics that proved useful in various computer vision tasks: Resnet-101, NASNet, MobileNet_v2, and Transformer ViT-b32. Furthermore, we have defined a unique large-scale dataset, collected over a broad range of sea conditions from an ocean-going vessel prepared for machine learning. We used the transfer learning approach to fine-tune the models on our dataset. The obtained results demonstrate the potential for this approach to complement traditional methods, particularly where in-situ measurements are unfeasible or interpolated weather buoy data is insufficiently accurate. This study sets the groundwork for further development of sea state classification models to address recognized gaps in maritime research and enable safer and more efficient maritime operations.
Related papers
- Real-time Ship Recognition and Georeferencing for the Improvement of Maritime Situational Awareness [0.0]
This thesis presents an investigation into leveraging deep learning and computer vision to advance real-time ship recognition and georeferencing.
A novel dataset, ShipSG, is introduced, containing 3,505 images and 11,625 ship masks with corresponding class and geographic position.
A custom real-time segmentation architecture, ScatYOLOv8+CBAM, is designed for the NVIDIA Jetson AGX Xavier embedded system.
arXiv Detail & Related papers (2024-10-07T11:43:42Z) - Introducing VaDA: Novel Image Segmentation Model for Maritime Object Segmentation Using New Dataset [3.468621550644668]
The maritime shipping industry is undergoing rapid evolution driven by advancements in computer vision artificial intelligence (AI)
object recognition in maritime environments faces challenges such as light reflection, interference, intense lighting, and various weather conditions.
Existing AI recognition models and datasets have limited suitability for composing autonomous navigation systems.
arXiv Detail & Related papers (2024-07-12T05:48:53Z) - Outlier detection in maritime environments using AIS data and deep recurrent architectures [5.399126243770847]
We present a methodology based on deep recurrent models for maritime surveillance, over publicly available Automatic Identification System (AIS) data.
The setup employs a deep Recurrent Neural Network (RNN)-based model, for encoding and reconstructing the observed ships' motion patterns.
Our approach is based on a thresholding mechanism, over the calculated errors between observed and reconstructed motion patterns.
arXiv Detail & Related papers (2024-06-14T12:15:15Z) - Automatized marine vessel monitoring from sentinel-1 data using
convolution neural network [0.0]
We introduce wavelet transformation-based Convolution Neural Network approach to recognize objects from SAR images during the heavy naval traffic.
The information comprises Sentinel-1 SAR-C dual-polarization data acquisitions over the western coastal zones of India.
arXiv Detail & Related papers (2023-04-23T18:09:44Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs.
All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks.
arXiv Detail & Related papers (2022-11-02T11:10:42Z) - A Transfer Learning-Based Approach to Marine Vessel Re-Identification [0.0]
This paper proposes a transfer dynamic alignment algorithm and simulates the swaying situation of vessels at sea.
It improves the mean average accuracy (mAP) by 10.2% and the first hit rate (Rank1) by 4.9% on average.
arXiv Detail & Related papers (2022-07-29T06:36:10Z) - xView3-SAR: Detecting Dark Fishing Activity Using Synthetic Aperture
Radar Imagery [52.67592123500567]
Unsustainable fishing practices worldwide pose a major threat to marine resources and ecosystems.
It is now possible to automate detection of dark vessels day or night, under all-weather conditions.
xView3-SAR consists of nearly 1,000 analysis-ready SAR images from the Sentinel-1 mission.
arXiv Detail & Related papers (2022-06-02T06:53:45Z) - SelfTune: Metrically Scaled Monocular Depth Estimation through
Self-Supervised Learning [53.78813049373321]
We propose a self-supervised learning method for the pre-trained supervised monocular depth networks to enable metrically scaled depth estimation.
Our approach is useful for various applications such as mobile robot navigation and is applicable to diverse environments.
arXiv Detail & Related papers (2022-03-10T12:28:42Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
We describe a robotic learning system for autonomous exploration and navigation in diverse, open-world environments.
At the core of our method is a learned latent variable model of distances and actions, along with a non-parametric topological memory of images.
We use an information bottleneck to regularize the learned policy, giving us (i) a compact visual representation of goals, (ii) improved generalization capabilities, and (iii) a mechanism for sampling feasible goals for exploration.
arXiv Detail & Related papers (2021-04-12T23:14:41Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
We propose occupancy anticipation, where the agent uses its egocentric RGB-D observations to infer the occupancy state beyond the visible regions.
By exploiting context in both the egocentric views and top-down maps our model successfully anticipates a broader map of the environment.
Our approach is the winning entry in the 2020 Habitat PointNav Challenge.
arXiv Detail & Related papers (2020-08-21T03:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.