The ATLAS of Traffic Lights: A Reliable Perception Framework for Autonomous Driving
- URL: http://arxiv.org/abs/2504.19722v1
- Date: Mon, 28 Apr 2025 12:15:42 GMT
- Title: The ATLAS of Traffic Lights: A Reliable Perception Framework for Autonomous Driving
- Authors: Rupert Polley, Nikolai Polley, Dominik Heid, Marc Heinrich, Sven Ochs, J. Marius Zöllner,
- Abstract summary: We propose a modularized perception framework that integrates state-of-the-art detection models with a novel real-time association and decision framework.<n>We introduce the ATLAS dataset, which provides comprehensive annotations of traffic light states and pictograms.<n>We train and evaluate several state-of-the-art traffic light detection architectures on ATLAS, demonstrating significant performance improvements in both accuracy and robustness.
- Score: 9.932968493913357
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Traffic light perception is an essential component of the camera-based perception system for autonomous vehicles, enabling accurate detection and interpretation of traffic lights to ensure safe navigation through complex urban environments. In this work, we propose a modularized perception framework that integrates state-of-the-art detection models with a novel real-time association and decision framework, enabling seamless deployment into an autonomous driving stack. To address the limitations of existing public datasets, we introduce the ATLAS dataset, which provides comprehensive annotations of traffic light states and pictograms across diverse environmental conditions and camera setups. This dataset is publicly available at https://url.fzi.de/ATLAS. We train and evaluate several state-of-the-art traffic light detection architectures on ATLAS, demonstrating significant performance improvements in both accuracy and robustness. Finally, we evaluate the framework in real-world scenarios by deploying it in an autonomous vehicle to make decisions at traffic light-controlled intersections, highlighting its reliability and effectiveness for real-time operation.
Related papers
- Video-based Traffic Light Recognition by Rockchip RV1126 for Autonomous Driving [19.468567166834585]
Real-time traffic light recognition is fundamental for autonomous driving safety and navigation in urban environments.<n>We present textitViTLR, a novel video-based end-to-end neural network that processes multiple consecutive frames to achieve robust traffic light detection and state classification.<n>We have successfully integrated textitViTLR into an ego-lane traffic light recognition system using HD maps for autonomous driving applications.
arXiv Detail & Related papers (2025-03-31T11:27:48Z) - RAD: Retrieval-Augmented Decision-Making of Meta-Actions with Vision-Language Models in Autonomous Driving [10.984203470464687]
Vision-language models (VLMs) often suffer from limitations such as inadequate spatial perception and hallucination.<n>We propose a retrieval-augmented decision-making (RAD) framework to enhance VLMs' capabilities to reliably generate meta-actions in autonomous driving scenes.<n>We fine-tune VLMs on a dataset derived from the NuScenes dataset to enhance their spatial perception and bird's-eye view image comprehension capabilities.
arXiv Detail & Related papers (2025-03-18T03:25:57Z) - Towards Intelligent Transportation with Pedestrians and Vehicles In-the-Loop: A Surveillance Video-Assisted Federated Digital Twin Framework [62.47416496137193]
We propose a surveillance video assisted federated digital twin (SV-FDT) framework to empower ITSs with pedestrians and vehicles in-the-loop.<n>The architecture consists of three layers: (i) the end layer, which collects traffic surveillance videos from multiple sources; (ii) the edge layer, responsible for semantic segmentation-based visual understanding, twin agent-based interaction modeling, and local digital twin system (LDTS) creation in local regions; and (iii) the cloud layer, which integrates LDTSs across different regions to construct a global DT model in realtime.
arXiv Detail & Related papers (2025-03-06T07:36:06Z) - An Efficient Approach to Generate Safe Drivable Space by LiDAR-Camera-HDmap Fusion [13.451123257796972]
We propose an accurate and robust perception module for Autonomous Vehicles (AVs) for drivable space extraction.
Our work introduces a robust easy-to-generalize perception module that leverages LiDAR, camera, and HD map data fusion.
Our approach is tested on a real dataset and its reliability is verified during the daily (including harsh snowy weather) operation of our autonomous shuttle, WATonoBus.
arXiv Detail & Related papers (2024-10-29T17:54:02Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - FARSEC: A Reproducible Framework for Automatic Real-Time Vehicle Speed
Estimation Using Traffic Cameras [14.339217121537537]
Transportation-dependent systems, such as for navigation and logistics, have great potential to benefit from reliable speed estimation.
We provide a novel framework for automatic real-time vehicle speed calculation, which copes with more diverse data from publicly available traffic cameras.
Our framework is capable of handling realistic conditions such as camera movements and different video stream inputs automatically.
arXiv Detail & Related papers (2023-09-25T19:02:40Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
This work aims to carry out a study on the current scenario of camera and radar-based perception for ADAS and autonomous vehicles.
Concepts and characteristics related to both sensors, as well as to their fusion, are presented.
We give an overview of the Deep Learning-based detection and segmentation tasks, and the main datasets, metrics, challenges, and open questions in vehicle perception.
arXiv Detail & Related papers (2023-03-08T00:48:32Z) - Visual Perception System for Autonomous Driving [9.659835301514288]
This work introduces a visual-based perception system for autonomous driving that integrates trajectory tracking and prediction of moving objects to prevent collisions.
The system leverages motion cues from pedestrians to monitor and forecast their movements and simultaneously maps the environment.
The performance, efficiency, and resilience of this approach are substantiated through comprehensive evaluations of both simulated and real-world datasets.
arXiv Detail & Related papers (2023-03-03T23:12:43Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - LIBRE: The Multiple 3D LiDAR Dataset [54.25307983677663]
We present LIBRE: LiDAR Benchmarking and Reference, a first-of-its-kind dataset featuring 10 different LiDAR sensors.
LIBRE will contribute to the research community to provide a means for a fair comparison of currently available LiDARs.
It will also facilitate the improvement of existing self-driving vehicles and robotics-related software.
arXiv Detail & Related papers (2020-03-13T06:17:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.