Contextures: The Mechanism of Representation Learning
- URL: http://arxiv.org/abs/2504.19792v1
- Date: Mon, 28 Apr 2025 13:36:28 GMT
- Title: Contextures: The Mechanism of Representation Learning
- Authors: Runtian Zhai,
- Abstract summary: dissertation establishes the contexture theory to mathematically characterize the mechanism of representation learning, or pretraining.<n>The central argument is that a representation is learned from the association between the input X and a context variable A.<n>We demonstrate that many pretraining objectives can learn the contexture, including supervised learning, self-supervised learning, generative models, etc.
- Score: 3.7257289916860152
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This dissertation establishes the contexture theory to mathematically characterize the mechanism of representation learning, or pretraining. Despite the remarkable empirical success of foundation models, it is not very clear what representations they learn, and why these representations are useful for various downstream tasks. A scientific understanding of representation learning is critical, especially at this point when scaling up the model size is producing diminishing returns, and designing new pretraining methods is imperative for further progress. Prior work treated different representation learning methods quite differently, whereas the contexture theory provides a unified framework for analyzing these methods. The central argument is that a representation is learned from the association between the input X and a context variable A. We prove that if an encoder captures the maximum information of this association, in which case we say that the encoder learns the contexture, then it will be optimal on the class of tasks that are compatible with the context. We also show that a context is the most useful when the association between X and A is neither too strong nor too weak. The important implication of the contexture theory is that increasing the model size alone will achieve diminishing returns, and further advancements require better contexts. We demonstrate that many pretraining objectives can learn the contexture, including supervised learning, self-supervised learning, generative models, etc. Then, we introduce two general objectives -- SVME and KISE, for learning the contexture. We also show how to mix multiple contexts together, an effortless way to create better contexts from existing ones. Then, we prove statistical learning bounds for representation learning. Finally, we discuss the effect of the data distribution shift from pretraining to the downstream task.
Related papers
- ICLR: In-Context Learning of Representations [19.331483579806623]
We show that as the amount of context is scaled, there is a sudden re-organization from pretrained semantic representations to in-context representations aligned with the graph structure.<n>Our findings indicate scaling context-size can flexibly re-organize model representations, possibly unlocking novel capabilities.
arXiv Detail & Related papers (2024-12-29T18:58:09Z) - A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
In self-supervised learning (SSL), representations are learned via an auxiliary task without annotated labels.
We present a generative latent variable model for self-supervised learning.
We show that several families of discriminative SSL, including contrastive methods, induce a comparable distribution over representations.
arXiv Detail & Related papers (2024-02-02T13:31:17Z) - Flow Factorized Representation Learning [109.51947536586677]
We introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations.
We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models.
arXiv Detail & Related papers (2023-09-22T20:15:37Z) - A Theory of Emergent In-Context Learning as Implicit Structure Induction [8.17811111226145]
Scaling large language models leads to an emergent capacity to learn in-context from example demonstrations.
We argue that in-context learning relies on recombination of compositional operations found in natural language data.
We show how in-context learning is supported by a representation of the input's compositional structure.
arXiv Detail & Related papers (2023-03-14T15:24:05Z) - The Learnability of In-Context Learning [16.182561312622315]
We propose a first-of-its-kind PAC based framework for in-context learnability.
Our framework includes an initial pretraining phase, which fits a function to the pretraining distribution.
We show that in-context learning is more about identifying the task than about learning it.
arXiv Detail & Related papers (2023-03-14T13:28:39Z) - Relate to Predict: Towards Task-Independent Knowledge Representations
for Reinforcement Learning [11.245432408899092]
Reinforcement Learning can enable agents to learn complex tasks.
It is difficult to interpret the knowledge and reuse it across tasks.
In this paper, we introduce an inductive bias for explicit object-centered knowledge separation.
We show that the degree of explicitness in knowledge separation correlates with faster learning, better accuracy, better generalization, and better interpretability.
arXiv Detail & Related papers (2022-12-10T13:33:56Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
We study the effect of two main information sources in text: textual context and entity mentions (names)
We propose an entity-masked contrastive pre-training framework for relation extraction (RE)
Our framework can improve the effectiveness and robustness of neural models in different RE scenarios.
arXiv Detail & Related papers (2020-10-05T11:21:59Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - How Far are We from Effective Context Modeling? An Exploratory Study on
Semantic Parsing in Context [59.13515950353125]
We present a grammar-based decoding semantic parsing and adapt typical context modeling methods on top of it.
We evaluate 13 context modeling methods on two large cross-domain datasets, and our best model achieves state-of-the-art performances.
arXiv Detail & Related papers (2020-02-03T11:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.