FX-DARTS: Designing Topology-unconstrained Architectures with Differentiable Architecture Search and Entropy-based Super-network Shrinking
- URL: http://arxiv.org/abs/2504.20079v1
- Date: Fri, 25 Apr 2025 08:34:29 GMT
- Title: FX-DARTS: Designing Topology-unconstrained Architectures with Differentiable Architecture Search and Entropy-based Super-network Shrinking
- Authors: Xuan Rao, Bo Zhao, Derong Liu, Cesare Alippi,
- Abstract summary: Strong priors are imposed on the search space of Differentiable Architecture Search (DARTS)<n>This paper aims to reduce these prior constraints by eliminating restrictions on cell topology and modifying the discretization mechanism for super-networks.<n>FX-DARTS is capable of exploring a set of neural architectures with competitive trade-offs between performance and computational complexity.
- Score: 19.98065888943856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Strong priors are imposed on the search space of Differentiable Architecture Search (DARTS), such that cells of the same type share the same topological structure and each intermediate node retains two operators from distinct nodes. While these priors reduce optimization difficulties and improve the applicability of searched architectures, they hinder the subsequent development of automated machine learning (Auto-ML) and prevent the optimization algorithm from exploring more powerful neural networks through improved architectural flexibility. This paper aims to reduce these prior constraints by eliminating restrictions on cell topology and modifying the discretization mechanism for super-networks. Specifically, the Flexible DARTS (FX-DARTS) method, which leverages an Entropy-based Super-Network Shrinking (ESS) framework, is presented to address the challenges arising from the elimination of prior constraints. Notably, FX-DARTS enables the derivation of neural architectures without strict prior rules while maintaining the stability in the enlarged search space. Experimental results on image classification benchmarks demonstrate that FX-DARTS is capable of exploring a set of neural architectures with competitive trade-offs between performance and computational complexity within a single search procedure.
Related papers
- DNAD: Differentiable Neural Architecture Distillation [6.026956571669411]
Differentiable neural architecture distillation (DNAD) algorithm is developed based on two cores, namely search by deleting and search by imitating.<n>DNAD achieves the top-1 error rate of 23.7% on ImageNet classification with a model of 6.0M parameters and 598M FLOPs.<n>Super-network progressive shrinking (SNPS) algorithm is developed based on the framework of differentiable architecture search (DARTS)
arXiv Detail & Related papers (2025-04-25T08:49:31Z) - Spectral Architecture Search for Neural Networks [0.0]
We present a novel architecture search protocol which exploits the spectral attributes of the inter-layer transfer matrices.<n>We show that the newly proposed method yields a self-emerging architecture with a minimal degree of expressivity to handle the task under investigation.
arXiv Detail & Related papers (2025-04-01T15:14:30Z) - ZeroLM: Data-Free Transformer Architecture Search for Language Models [54.83882149157548]
Current automated proxy discovery approaches suffer from extended search times, susceptibility to data overfitting, and structural complexity.
This paper introduces a novel zero-cost proxy methodology that quantifies model capacity through efficient weight statistics.
Our evaluation demonstrates the superiority of this approach, achieving a Spearman's rho of 0.76 and Kendall's tau of 0.53 on the FlexiBERT benchmark.
arXiv Detail & Related papers (2025-03-24T13:11:22Z) - OStr-DARTS: Differentiable Neural Architecture Search based on Operation Strength [70.76342136866413]
Differentiable architecture search (DARTS) has emerged as a promising technique for effective neural architecture search.
DARTS suffers from the well-known degeneration issue which can lead to deteriorating architectures.
We propose a novel criterion based on operation strength that estimates the importance of an operation by its effect on the final loss.
arXiv Detail & Related papers (2024-09-22T13:16:07Z) - EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition [20.209756662832365]
Differentiable Neural Architecture Search (DARTS) automates the manual process of architecture design with high search efficiency.<n>We propose EM-DARTS, a hierarchical differentiable architecture search algorithm to automatically design the DL architecture for eye movement recognition.<n>We show that EM-DARTS is capable of producing an optimal architecture that leads to state-of-the-art recognition performance.
arXiv Detail & Related papers (2024-09-22T13:11:08Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
We propose to directly generate structural parameters by utilizing the specifically designed hyper kernels.
We obtain three kinds of networks to separately conduct pixel-level or image-level classifications with 1-D or 3-D convolutions.
A series of experiments on six public datasets demonstrate that the proposed methods achieve state-of-the-art results.
arXiv Detail & Related papers (2023-04-23T17:27:40Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - $\Lambda$-DARTS: Mitigating Performance Collapse by Harmonizing
Operation Selection among Cells [11.777101481512423]
Differentiable neural architecture search (DARTS) is a popular method for neural architecture search (NAS)
We show that DARTS suffers from a specific structural flaw due to its weight-sharing framework that limits the convergence of DARTS to saturation points of the softmax function.
We propose two new regularization terms that aim to prevent performance collapse by harmonizing operation selection via aligning gradients of layers.
arXiv Detail & Related papers (2022-10-14T17:54:01Z) - D-DARTS: Distributed Differentiable Architecture Search [75.12821786565318]
Differentiable ARchiTecture Search (DARTS) is one of the most trending Neural Architecture Search (NAS) methods.
We propose D-DARTS, a novel solution that addresses this problem by nesting several neural networks at cell-level.
arXiv Detail & Related papers (2021-08-20T09:07:01Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
Differentiable ARchiTecture Search (DARTS) has recently become the mainstream of neural architecture search (NAS)
We tackle the hypergradient computation in DARTS based on the implicit function theorem.
We show that the architecture optimisation with the proposed method, named iDARTS, is expected to converge to a stationary point.
arXiv Detail & Related papers (2021-06-21T00:44:11Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
Generative Adversarial Networks (GANs) are formulated as minimax game problems, whereby generators attempt to approach real data distributions by virtue of adversarial learning against discriminators.
In this work, we aim to boost model learning from the perspective of network architectures, by incorporating recent progress on automated architecture search into GANs.
We propose a fully differentiable search framework for generative adversarial networks, dubbed alphaGAN.
arXiv Detail & Related papers (2020-06-16T13:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.