論文の概要: VideoMultiAgents: A Multi-Agent Framework for Video Question Answering
- arxiv url: http://arxiv.org/abs/2504.20091v2
- Date: Wed, 30 Apr 2025 03:42:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.578246
- Title: VideoMultiAgents: A Multi-Agent Framework for Video Question Answering
- Title(参考訳): VideoMultiAgents: ビデオ質問応答のためのマルチエージェントフレームワーク
- Authors: Noriyuki Kugo, Xiang Li, Zixin Li, Ashish Gupta, Arpandeep Khatua, Nidhish Jain, Chaitanya Patel, Yuta Kyuragi, Yasunori Ishii, Masamoto Tanabiki, Kazuki Kozuka, Ehsan Adeli,
- Abstract要約: Video Question Answering (VQA) は本質的にマルチモーダル推論に依存している。
本稿では,視覚,シーングラフ解析,テキスト処理などの特殊エージェントを統合するフレームワークであるVideoMultiAgentsを紹介する。
提案手法は, 対象, 行動, 時間的遷移をハイライトするキャプションを生成する, 質問誘導キャプション生成を補足する。
- 参考スコア(独自算出の注目度): 11.514596823413736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video Question Answering (VQA) inherently relies on multimodal reasoning, integrating visual, temporal, and linguistic cues to achieve a deeper understanding of video content. However, many existing methods rely on feeding frame-level captions into a single model, making it difficult to adequately capture temporal and interactive contexts. To address this limitation, we introduce VideoMultiAgents, a framework that integrates specialized agents for vision, scene graph analysis, and text processing. It enhances video understanding leveraging complementary multimodal reasoning from independently operating agents. Our approach is also supplemented with a question-guided caption generation, which produces captions that highlight objects, actions, and temporal transitions directly relevant to a given query, thus improving the answer accuracy. Experimental results demonstrate that our method achieves state-of-the-art performance on Intent-QA (79.0%, +6.2% over previous SOTA), EgoSchema subset (75.4%, +3.4%), and NExT-QA (79.6%, +0.4%). The source code is available at https://github.com/PanasonicConnect/VideoMultiAgents.
- Abstract(参考訳): Video Question Answering (VQA) は本質的にはマルチモーダル推論に依存し、視覚的、時間的、言語的な手がかりを統合して、ビデオコンテンツをより深く理解する。
しかし、既存の多くの手法はフレームレベルのキャプションを単一モデルに供給することに依存しており、時間的・インタラクティブな文脈を適切に捉えることは困難である。
この制限に対処するために、視覚、シーングラフ分析、テキスト処理のための特殊なエージェントを統合するフレームワークであるVideoMultiAgentsを紹介する。
独立操作エージェントからの相補的マルチモーダル推論を利用した映像理解を強化する。
また,提案手法では,あるクエリに直接関係するオブジェクト,アクション,時間的遷移をハイライトするキャプションを生成し,回答の精度を向上する。
Intent-QA (79.0%, +6.2%) , EgoSchema サブセット (75.4%, +3.4%) および NExT-QA (79.6%, +0.4%) の最先端性能が得られた。
ソースコードはhttps://github.com/PanasonicConnect/VideoMultiAgentsで入手できる。
関連論文リスト
- HierarQ: Task-Aware Hierarchical Q-Former for Enhanced Video Understanding [14.464718780172582]
タスク対応の階層型Q-FormerベースのフレームワークであるHierarQを導入する。
ビデオ理解にタスク認識を組み込むために,軽量な2ストリーム言語誘導機能変調器を導入する。
ビデオ理解、質問応答、キャプションタスクにわたる10の動画ベンチマークの大規模な評価は、HierarQの最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-11T16:21:23Z) - Prompting Video-Language Foundation Models with Domain-specific Fine-grained Heuristics for Video Question Answering [71.62961521518731]
HeurVidQAは、ドメイン固有のエンティティアクションを利用して、事前訓練されたビデオ言語基盤モデルを洗練するフレームワークである。
我々のアプローチでは、これらのモデルを暗黙の知識エンジンとして扱い、ドメイン固有のエンティティアクションプロンサを使用して、推論を強化する正確な手がかりにモデルを焦点を向けます。
論文 参考訳(メタデータ) (2024-10-12T06:22:23Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2は、ビデオファウンデーションモデル(FM)の新たなファミリーで、ビデオ認識、ビデオ音声タスク、ビデオ中心タスクの最先端の結果を達成する。
私たちのコアデザインは、マスク付きビデオモデリング、クロスコントラスト学習、予測トークンを統合し、最大6Bビデオサイズまでスケールアップするプログレッシブトレーニングアプローチです。
論文 参考訳(メタデータ) (2024-03-22T17:57:42Z) - VideoAgent: A Memory-augmented Multimodal Agent for Video Understanding [28.316828641898375]
VideoAgent: 1)は、一般的な時間的イベント記述と、ビデオのオブジェクト中心のトラッキング状態の両方を格納する構造化メモリを構築する。
2) 入力タスククエリが与えられた場合,ビデオセグメントのローカライゼーションやオブジェクトメモリクエリなどのツールと,他の視覚基盤モデルを用いて対話的にタスクを解く。
論文 参考訳(メタデータ) (2024-03-18T05:07:59Z) - VideoAgent: Long-form Video Understanding with Large Language Model as Agent [26.903040507914053]
本稿では,大規模言語モデルを中心的エージェントとして利用して,重要な情報を特定し,コンパイルして質問に答える,新たなエージェントベースシステムであるVideoAgentを紹介する。
本研究では,現在の最先端手法よりも優れた手法の有効性と効率性を示す。
論文 参考訳(メタデータ) (2024-03-15T17:57:52Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
本稿では,映像情報とテキスト情報の相乗効果を向上するための最先端フレームワークであるVaQuitAを紹介する。
データレベルでは、フレームを均一にサンプリングする代わりに、CLIPスコアランキングでガイドされるサンプリング手法を実装している。
機能レベルでは、Visual-Query Transformerと一緒にトレーニング可能なVideo Perceiverを統合します。
論文 参考訳(メタデータ) (2023-12-04T19:48:02Z) - Bidirectional Cross-Modal Knowledge Exploration for Video Recognition
with Pre-trained Vision-Language Models [149.1331903899298]
本稿では,双方向の知識を探索するクロスモーダルブリッジを用いた,BIKEと呼ばれる新しいフレームワークを提案する。
本研究では,テキスト・トゥ・ビデオの専門知識を用いて時間的サリエンシをパラメータフリーでキャプチャする時間的概念スポッティング機構を提案する。
我々の最良のモデルは、リリースしたCLIPモデルを使用して、Kinetics-400の挑戦に対して、最先端の精度88.6%を達成する。
論文 参考訳(メタデータ) (2022-12-31T11:36:53Z) - MIST: Multi-modal Iterative Spatial-Temporal Transformer for Long-form
Video Question Answering [73.61182342844639]
我々は,MIST(Multi-modal Iterative Spatial-temporal Transformer)と呼ばれる新しいモデルを導入する。
MISTは、従来の密集時空間自己アテンションをカスケードセグメントと領域選択モジュールに分解する。
異なる粒度の視覚概念は、アテンションモジュールを通して効率的に処理される。
論文 参考訳(メタデータ) (2022-12-19T15:05:40Z) - Video Question Answering with Iterative Video-Text Co-Tokenization [77.66445727743508]
本稿では,ビデオ質問応答のための新しいマルチストリームビデオエンコーダを提案する。
実験により,MSRVTT-QA,MSVD-QA,IVQAなどの複数のデータセットでモデルを評価する。
本稿では,必要なGFLOPを150-360から67に削減し,高効率なビデオ質問応答モデルを構築した。
論文 参考訳(メタデータ) (2022-08-01T15:35:38Z) - Frame-wise Cross-modal Matching for Video Moment Retrieval [32.68921139236391]
ビデオモーメント検索は、与えられた言語クエリのためにビデオ中の瞬間を検索するターゲットである。
本課題は,1)未編集ビデオにおける関連モーメントのローカライズの必要性,2)テキストクエリとビデオコンテンツ間のセマンティックなギャップを埋めることである。
本稿では,対話モデルに基づいて時間境界を予測できる注意的相互関連マッチングモデルを提案する。
論文 参考訳(メタデータ) (2020-09-22T10:25:41Z) - Dense-Caption Matching and Frame-Selection Gating for Temporal
Localization in VideoQA [96.10612095576333]
本稿では,マルチモーダルな入力源を効果的に統合し,時間的関連情報から質問に答えるビデオ質問応答モデルを提案する。
また,2レベルアテンション(単語・オブジェクト・フレームレベル),異なるソース(ビデオ・高密度キャプション)に対するマルチヘッド自己統合,ゲートへのより関連性の高い情報伝達などで構成されている。
当社のモデルは,各モデルコンポーネントが大きな利益をもたらす,難易度の高いTVQAデータセット上で評価され,全体的なモデルでは,最先端のモデルよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2020-05-13T16:35:27Z) - HERO: Hierarchical Encoder for Video+Language Omni-representation
Pre-training [75.55823420847759]
本稿では,大規模ビデオ+言語オムニ表現学習のための新しいフレームワークHEROを提案する。
HEROは階層構造でマルチモーダル入力を符号化し、ビデオフレームのローカルコンテキストをクロスモーダル変換器でキャプチャする。
HEROはHowTo100Mと大規模TVデータセットを共同でトレーニングし、マルチキャラクタインタラクションによる複雑な社会的ダイナミクスの理解を深める。
論文 参考訳(メタデータ) (2020-05-01T03:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。