HyboWaveNet: Hyperbolic Graph Neural Networks with Multi-Scale Wavelet Transform for Protein-Protein Interaction Prediction
- URL: http://arxiv.org/abs/2504.20102v1
- Date: Sun, 27 Apr 2025 09:20:50 GMT
- Title: HyboWaveNet: Hyperbolic Graph Neural Networks with Multi-Scale Wavelet Transform for Protein-Protein Interaction Prediction
- Authors: Qingzhi Yu, Shuai Yan, Wenfeng Dai, Xiang Cheng,
- Abstract summary: HyboWaveNet is a novel deep learning framework that collaborates with hyperbolic graphical neural networks and multiscale graphical wavelet transform.<n>Our framework generates node feature representations via a graph neural network under the Lorenz model.<n>We show that HyboWaveNet improves over both existing state-of-the-art methods.
- Score: 6.605694231959941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Protein-protein interactions (PPIs) are fundamental for deciphering cellular functions,disease pathways,and drug discovery.Although existing neural networks and machine learning methods have achieved high accuracy in PPI prediction,their black-box nature leads to a lack of causal interpretation of the prediction results and difficulty in capturing hierarchical geometries and multi-scale dynamic interaction patterns among proteins.To address these challenges, we propose HyboWaveNet,a novel deep learning framework that collaborates with hyperbolic graphical neural networks (HGNNs) and multiscale graphical wavelet transform for robust PPI prediction. Mapping protein features to Lorentz space simulates hierarchical topological relationships among biomolecules via a hyperbolic distance metric,enabling node feature representations that better fit biological a priori.HyboWaveNet inherently simulates hierarchical and scale-free biological relationships, while the integration of wavelet transforms enables adaptive extraction of local and global interaction features across different resolutions. Our framework generates node feature representations via a graph neural network under the Lorenz model and generates pairs of positive samples under multiple different views for comparative learning, followed by further feature extraction via multi-scale graph wavelet transforms to predict potential PPIs. Experiments on public datasets show that HyboWaveNet improves over both existing state-of-the-art methods. We also demonstrate through ablation experimental studies that the multi-scale graph wavelet transform module improves the predictive performance and generalization ability of HyboWaveNet. This work links geometric deep learning and signal processing to advance PPI prediction, providing a principled approach for analyzing complex biological systems
Related papers
- Heterogeneous network drug-target interaction prediction model based on graph wavelet transform and multi-level contrastive learning [8.154286666697312]
This study proposes a heterogeneous network drug target interaction prediction framework.<n>It integrates graph neural network and multi scale signal processing technology to construct a model with both efficient prediction and multi level interpretability.<n> Experimental results show that our framework shows excellent prediction performance on all datasets.
arXiv Detail & Related papers (2025-04-27T09:29:50Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Message-Passing Neural Quantum States for the Homogeneous Electron Gas [41.94295877935867]
We introduce a message-passing-neural-network-based wave function Ansatz to simulate extended, strongly interacting fermions in continuous space.
We demonstrate its accuracy by simulating the ground state of the homogeneous electron gas in three spatial dimensions.
arXiv Detail & Related papers (2023-05-12T04:12:04Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
Current biological networks are noisy, sparse, and incomplete. Experimental identification of such interactions is both time-consuming and expensive.
Deep graph neural networks have shown their effectiveness in modeling graph-structured data and achieved good performance in biomedical interaction prediction.
Our proposed method enables the graph convolutional networks to dynamically adapt their depths to accommodate an increasing number of interactions.
arXiv Detail & Related papers (2022-11-22T20:44:28Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Structure-aware Interactive Graph Neural Networks for the Prediction of
Protein-Ligand Binding Affinity [52.67037774136973]
Drug discovery often relies on the successful prediction of protein-ligand binding affinity.
Recent advances have shown great promise in applying graph neural networks (GNNs) for better affinity prediction by learning the representations of protein-ligand complexes.
We propose a structure-aware interactive graph neural network (SIGN) which consists of two components: polar-inspired graph attention layers (PGAL) and pairwise interactive pooling (PiPool)
arXiv Detail & Related papers (2021-07-21T03:34:09Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
A novel deep learning framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals.
The introduced approach has been shown to converge for both personalized and group-wise predictions.
arXiv Detail & Related papers (2020-06-16T04:57:12Z) - Improved Protein-ligand Binding Affinity Prediction with Structure-Based
Deep Fusion Inference [3.761791311908692]
Predicting accurate protein-ligand binding affinity is important in drug discovery.
Recent advances in the deep convolutional and graph neural network based approaches, the model performance depends on the input data representation.
We present fusion models to benefit from different feature representations of two neural network models to improve the binding affinity prediction.
arXiv Detail & Related papers (2020-05-17T22:26:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.