論文の概要: Can LLMs Be Trusted for Evaluating RAG Systems? A Survey of Methods and Datasets
- arxiv url: http://arxiv.org/abs/2504.20119v2
- Date: Thu, 01 May 2025 13:03:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.608438
- Title: Can LLMs Be Trusted for Evaluating RAG Systems? A Survey of Methods and Datasets
- Title(参考訳): LLMはRAGシステム評価に信頼できるか? : 手法とデータセットの調査
- Authors: Lorenz Brehme, Thomas Ströhle, Ruth Breu,
- Abstract要約: 近年,RAG(Retrieval-Augmented Generation)が著しく進歩している。
RAGの複雑さは、体系的な評価と品質向上に重大な課題をもたらす。
本研究は,63の学術論文を体系的にレビューし,最新のRAG評価手法を概観する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-Augmented Generation (RAG) has advanced significantly in recent years. The complexity of RAG systems, which involve multiple components-such as indexing, retrieval, and generation-along with numerous other parameters, poses substantial challenges for systematic evaluation and quality enhancement. Previous research highlights that evaluating RAG systems is essential for documenting advancements, comparing configurations, and identifying effective approaches for domain-specific applications. This study systematically reviews 63 academic articles to provide a comprehensive overview of state-of-the-art RAG evaluation methodologies, focusing on four key areas: datasets, retrievers, indexing and databases, and the generator component. We observe the feasibility of an automated evaluation approach for each component of a RAG system, leveraging an LLM capable of both generating evaluation datasets and conducting evaluations. In addition, we found that further practical research is essential to provide companies with clear guidance on the do's and don'ts of implementing and evaluating RAG systems. By synthesizing evaluation approaches for key RAG components and emphasizing the creation and adaptation of domain-specific datasets for benchmarking, we contribute to the advancement of systematic evaluation methods and the improvement of evaluation rigor for RAG systems. Furthermore, by examining the interplay between automated approaches leveraging LLMs and human judgment, we contribute to the ongoing discourse on balancing automation and human input, clarifying their respective contributions, limitations, and challenges in achieving robust and reliable evaluations.
- Abstract(参考訳): 近年,RAG(Retrieval-Augmented Generation)が著しく進歩している。
RAGシステムの複雑さは、索引付け、検索、生成など、多くのパラメータとともに、体系的な評価と品質向上に重大な課題を提起する。
これまでの研究では、RAGシステムの評価は、進歩の文書化、構成の比較、ドメイン固有のアプリケーションに対する効果的なアプローチの特定に不可欠であることが強調されていた。
本研究は,63の学術論文を体系的にレビューし,最新のRAG評価手法を概観し,データセット,検索者,インデックス,データベース,ジェネレータコンポーネントの4つの重要な領域に着目した。
評価データセットの生成と評価の実施の両方が可能なLCMを活用し,RAGシステムの各コンポーネントに対する自動評価手法の実現可能性について検討した。
さらに,企業に対して,RAGシステムの実装や評価を行なわないことの明確なガイダンスを提供するためには,さらなる実践的な研究が不可欠であることが判明した。
鍵となるRAGコンポーネントの評価手法を合成し、ベンチマークのためのドメイン固有のデータセットの作成と適応を強調することにより、系統評価手法の進歩とRAGシステムの評価厳格性の向上に寄与する。
さらに,LLMを活用した自動化アプローチと人的判断の相互作用を検討することにより,自動化と人的入力のバランスに関する継続的な議論に寄与し,堅牢で信頼性の高い評価を実現する上での,それぞれの貢献,限界,課題を明らかにする。
関連論文リスト
- The Great Nugget Recall: Automating Fact Extraction and RAG Evaluation with Large Language Models [53.12387628636912]
本稿では,人間のアノテーションに対して評価を行う自動評価フレームワークを提案する。
この手法は2003年にTREC Question Answering (QA) Trackのために開発された。
完全自動ナゲット評価から得られるスコアと人間に基づく変種とのランニングレベルでの強い一致を観察する。
論文 参考訳(メタデータ) (2025-04-21T12:55:06Z) - Retrieval Augmented Generation Evaluation in the Era of Large Language Models: A Comprehensive Survey [29.186229489968564]
Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) と外部情報検索を統合し、自然言語処理に革命をもたらした。
RAGシステムの評価は、検索と生成コンポーネントを組み合わせたハイブリッドアーキテクチャのため、ユニークな課題を示す。
論文 参考訳(メタデータ) (2025-04-21T06:39:47Z) - OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
金融分野において全方向自動RAGベンチマークであるOmniEvalを導入する。
我々のベンチマークは多次元評価フレームワークによって特徴づけられる。
実験では、広範囲なテストデータセットを含むOmniEvalの包括性を実証した。
論文 参考訳(メタデータ) (2024-12-17T15:38:42Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAGは、RAGシステムが解答不能なクエリを効果的に処理できるかどうかを評価するために設計されたフレームワークである。
我々は、6つの未解決カテゴリを持つ分類を定義し、UAEval4RAGは、多様で挑戦的なクエリを自動的に合成する。
論文 参考訳(メタデータ) (2024-12-16T19:11:55Z) - A Methodology for Evaluating RAG Systems: A Case Study On Configuration Dependency Validation [6.544757635738911]
Retrieval-augmented Generation(RAG)は、異なるコンポーネント、設計決定、ドメイン固有の適応の傘である。
現在、RAG評価の方法論は一般に受け入れられていないが、この技術への関心は高まりつつある。
本稿では,RAGシステムの健全かつ信頼性の高い評価手法の最初の青写真を提案する。
論文 参考訳(メタデータ) (2024-10-11T13:36:13Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
本稿では,検索モジュールと生成モジュールの両方に対して,一連の診断指標を組み込んだ詳細な評価フレームワークであるRAGCheckerを提案する。
RAGCheckerは、他の評価指標よりも、人間の判断との相関が著しく優れている。
RAGCheckerのメトリクスは、より効果的なRAGシステムの開発において研究者や実践者を導くことができる。
論文 参考訳(メタデータ) (2024-08-15T10:20:54Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に焦点をあてて,完全性,幻覚,不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Evaluation of Retrieval-Augmented Generation: A Survey [13.633909177683462]
本稿では,Retrieval-Augmented Generation (RAG)システムの評価とベンチマークについて概観する。
具体的には、検索・生成要素の定量化指標(関連性、正確性、忠実性など)について検討・比較する。
次に、様々なデータセットとメトリクスを分析し、現在のベンチマークの限界について議論し、RAGベンチマークの分野を前進させる潜在的な方向性を提案する。
論文 参考訳(メタデータ) (2024-05-13T02:33:25Z) - ARES: An Automated Evaluation Framework for Retrieval-Augmented Generation Systems [46.522527144802076]
本稿では,RAGシステム評価のための自動RAG評価システムであるARESを紹介する。
ARESは軽量LM判定器を微調整し、個々のRAG成分の品質を評価する。
コードとデータセットをGithubで公開しています。
論文 参考訳(メタデータ) (2023-11-16T00:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。