論文の概要: Integration Flow Models
- arxiv url: http://arxiv.org/abs/2504.20179v1
- Date: Mon, 28 Apr 2025 18:29:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.633281
- Title: Integration Flow Models
- Title(参考訳): 統合フローモデル
- Authors: Jingjing Wang, Dan Zhang, Joshua Luo, Yin Yang, Feng Luo,
- Abstract要約: 統合フローは、ODE関数を解くことなく、ODEベースの軌道経路の積分を学習する。
ODEベースの生成モデルを推定する統一構造を持つ最初のモデルである。
CIFAR10では、変数爆発拡散モデル(VE)のFIDが2.86、再フローのない修正フローが3.36、PFGM++が2.91である。
- 参考スコア(独自算出の注目度): 8.402025338436696
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ordinary differential equation (ODE) based generative models have emerged as a powerful approach for producing high-quality samples in many applications. However, the ODE-based methods either suffer the discretization error of numerical solvers of ODE, which restricts the quality of samples when only a few NFEs are used, or struggle with training instability. In this paper, we proposed Integration Flow, which directly learns the integral of ODE-based trajectory paths without solving the ODE functions. Moreover, Integration Flow explicitly incorporates the target state $\mathbf{x}_0$ as the anchor state in guiding the reverse-time dynamics. We have theoretically proven this can contribute to both stability and accuracy. To the best of our knowledge, Integration Flow is the first model with a unified structure to estimate ODE-based generative models and the first to show the exact straightness of 1-Rectified Flow without reflow. Through theoretical analysis and empirical evaluations, we show that Integration Flows achieve improved performance when it is applied to existing ODE-based models, such as diffusion models, Rectified Flows, and PFGM++. Specifically, Integration Flow achieves one-step generation on CIFAR10 with FIDs of 2.86 for the Variance Exploding (VE) diffusion model, 3.36 for rectified flow without reflow, and 2.91 for PFGM++; and on ImageNet with FIDs of 4.09 for VE diffusion model, 4.35 for rectified flow without reflow and 4.15 for PFGM++.
- Abstract(参考訳): 正規微分方程式(ODE)に基づく生成モデルは、多くのアプリケーションで高品質なサンプルを作成するための強力なアプローチとして登場した。
しかし、ODEベースの手法は、数個のNFEを使用する場合のサンプルの品質を制限するODEの数値解法の離散誤差に悩まされるか、あるいは、トレーニング不安定性に苦慮する。
本稿では,ODE 関数を解くことなく ODE ベースの軌道経路の積分を直接学習する積分フローを提案する。
さらに、Integration Flowは、ターゲット状態 $\mathbf{x}_0$ を、逆時間ダイナミクスを導くアンカー状態として明示的に組み込む。
これは安定性と正確性の両方に寄与することが理論的に証明されている。
我々の知る限り、Integration Flowは、ODEベースの生成モデルを推定するための統一された構造を持つ最初のモデルであり、リフローなしで1-Rectified Flowの正確な直線性を示す最初のモデルです。
理論的解析と経験的評価により,拡散モデルやRectified Flows,PFGM++といった既存のODEモデルに適用することで,統合フローの性能が向上することを示す。
特に、Integration Flowは、分散拡散モデル(VE)のFIDが2.86、再フローのない修正フローが3.36、PFGM++が2.91、ImageNetが4.09、再フローのない修正フローが4.35、PFGM++が4.15でCIFAR10のFIDを1段階生成する。
関連論文リスト
- FlowDPS: Flow-Driven Posterior Sampling for Inverse Problems [51.99765487172328]
逆問題解決のための後部サンプリングは,フローを用いて効果的に行うことができる。
Flow-Driven Posterior Smpling (FlowDPS) は最先端の代替手段よりも優れています。
論文 参考訳(メタデータ) (2025-03-11T07:56:14Z) - Elucidating Flow Matching ODE Dynamics with Respect to Data Geometries [10.947094609205765]
拡散に基づく生成モデルが画像生成の標準となり, 学習ベクトル場によるサンプリングステップの削減により, 拡散モデルと比較して, ODEベースのサンプリングモデルとフローマッチングモデルにより効率が向上した。
我々は,ODE力学を駆動するデノイザを中心に,サンプル軌道の包括的解析を通じて,フローマッチングモデルの理論を推し進める。
解析により,グローバルなデータ特徴から局所構造への軌道の進化が明らかとなり,フローマッチングモデルにおけるサンプルごとの挙動の幾何学的特徴が得られた。
論文 参考訳(メタデータ) (2024-12-25T01:17:15Z) - FlowTS: Time Series Generation via Rectified Flow [67.41208519939626]
FlowTSは、確率空間における直線輸送を伴う整流フローを利用するODEベースのモデルである。
非条件設定では、FlowTSは最先端のパフォーマンスを達成し、コンテキストFIDスコアはStockとETThデータセットで0.019と0.011である。
条件設定では、太陽予測において優れた性能を達成している。
論文 参考訳(メタデータ) (2024-11-12T03:03:23Z) - On the Wasserstein Convergence and Straightness of Rectified Flow [54.580605276017096]
Rectified Flow (RF) は、ノイズからデータへの直流軌跡の学習を目的とした生成モデルである。
RFのサンプリング分布とターゲット分布とのワッサーシュタイン距離に関する理論的解析を行った。
本稿では,従来の経験的知見と一致した1-RFの特異性と直線性を保証する一般的な条件について述べる。
論文 参考訳(メタデータ) (2024-10-19T02:36:11Z) - Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow [65.51671121528858]
拡散モデルは、視覚生成を大幅に改善したが、生成ODEを解くという計算集約的な性質のため、生成速度の遅さによって妨げられている。
広く認識されている解である整流流は、ODEパスを直線化することで生成速度を向上させる。
本稿では,より広範な拡散モデルのカテゴリをカバーするために,設計空間と修正の応用範囲を一般化するRectified Diffusionを提案する。
論文 参考訳(メタデータ) (2024-10-09T17:43:38Z) - Text-to-Image Rectified Flow as Plug-and-Play Priors [52.586838532560755]
整流流は、ソースからターゲット分布への線形進行を強制する新しい生成モデルのクラスである。
補正フローアプローチが生成品質と効率を上回り,推論ステップを少なくすることを示した。
また,画像のインバージョンや編集における競合性能も示す。
論文 参考訳(メタデータ) (2024-06-05T14:02:31Z) - Improving the Training of Rectified Flows [14.652876697052156]
拡散モデルは画像生成とビデオ生成に大いに期待できるが、最先端モデルからのサンプリングには高コストの数値積分が必要である。
この問題に対処するための1つのアプローチは整流流であり、これは繰り返し、トランケーションエラーの影響を受けにくい滑らかなODEパスを学習する。
本研究は,NFEの低い環境下においても,改質流れを訓練するための改良手法を提案する。
改良された改質流は, 整合蒸留, 進行蒸留といった最先端蒸留法を1段階, 2段階で上回った。
論文 参考訳(メタデータ) (2024-05-30T17:56:04Z) - Sequential Flow Straightening for Generative Modeling [14.521246785215808]
本稿では,大域的トランケーション誤差を低減するために,確率フローを直線化する学習手法であるSeqRFを提案する。
CIFAR-10, CelebA-$64×64$, LSUN-Churchデータセットの超越結果を達成する。
論文 参考訳(メタデータ) (2024-02-09T15:09:38Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。