FreBIS: Frequency-Based Stratification for Neural Implicit Surface Representations
- URL: http://arxiv.org/abs/2504.20222v1
- Date: Mon, 28 Apr 2025 19:45:15 GMT
- Title: FreBIS: Frequency-Based Stratification for Neural Implicit Surface Representations
- Authors: Naoko Sawada, Pedro Miraldo, Suhas Lohit, Tim K. Marks, Moitreya Chatterjee,
- Abstract summary: We propose a novel, neural implicit surface representation approach called FreBIS to overcome this challenge.<n>FreBIS works by stratifying the scene based on the frequency of surfaces into multiple frequency levels, with each level encoded by a dedicated encoder.<n> Empirical evaluations on the challenging BlendedMVS dataset indicate that replacing the standard encoder in an off-the-shelf neural surface reconstruction method with our frequency-stratified encoders yields significant improvements.
- Score: 22.588351003491375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural implicit surface representation techniques are in high demand for advancing technologies in augmented reality/virtual reality, digital twins, autonomous navigation, and many other fields. With their ability to model object surfaces in a scene as a continuous function, such techniques have made remarkable strides recently, especially over classical 3D surface reconstruction methods, such as those that use voxels or point clouds. However, these methods struggle with scenes that have varied and complex surfaces principally because they model any given scene with a single encoder network that is tasked to capture all of low through high-surface frequency information in the scene simultaneously. In this work, we propose a novel, neural implicit surface representation approach called FreBIS to overcome this challenge. FreBIS works by stratifying the scene based on the frequency of surfaces into multiple frequency levels, with each level (or a group of levels) encoded by a dedicated encoder. Moreover, FreBIS encourages these encoders to capture complementary information by promoting mutual dissimilarity of the encoded features via a novel, redundancy-aware weighting module. Empirical evaluations on the challenging BlendedMVS dataset indicate that replacing the standard encoder in an off-the-shelf neural surface reconstruction method with our frequency-stratified encoders yields significant improvements. These enhancements are evident both in the quality of the reconstructed 3D surfaces and in the fidelity of their renderings from any viewpoint.
Related papers
- Sharpening Neural Implicit Functions with Frequency Consolidation Priors [53.6277160912059]
Signed Distance Functions (SDFs) are vital implicit representations to represent high fidelity 3D surfaces.<n>Current methods mainly leverage a neural network to learn an SDF from various supervisions including signed, 3D point clouds, or multi-view images.<n>We introduce a method to sharpen a low frequency SDF observation by recovering its high frequency components, pursuing a sharper and more complete surface.
arXiv Detail & Related papers (2024-12-27T16:18:46Z) - CVT-xRF: Contrastive In-Voxel Transformer for 3D Consistent Radiance Fields from Sparse Inputs [65.80187860906115]
We propose a novel approach to improve NeRF's performance with sparse inputs.
We first adopt a voxel-based ray sampling strategy to ensure that the sampled rays intersect with a certain voxel in 3D space.
We then randomly sample additional points within the voxel and apply a Transformer to infer the properties of other points on each ray, which are then incorporated into the volume rendering.
arXiv Detail & Related papers (2024-03-25T15:56:17Z) - WaveNeRF: Wavelet-based Generalizable Neural Radiance Fields [149.2296890464997]
We design WaveNeRF, which integrates wavelet frequency decomposition into MVS and NeRF.
WaveNeRF achieves superior generalizable radiance field modeling when only given three images as input.
arXiv Detail & Related papers (2023-08-09T09:24:56Z) - Learning Neural Duplex Radiance Fields for Real-Time View Synthesis [33.54507228895688]
We propose a novel approach to distill and bake NeRFs into highly efficient mesh-based neural representations.
We demonstrate the effectiveness and superiority of our approach via extensive experiments on a range of standard datasets.
arXiv Detail & Related papers (2023-04-20T17:59:52Z) - PINs: Progressive Implicit Networks for Multi-Scale Neural
Representations [68.73195473089324]
We propose a progressive positional encoding, exposing a hierarchical structure to incremental sets of frequency encodings.
Our model accurately reconstructs scenes with wide frequency bands and learns a scene representation at progressive level of detail.
Experiments on several 2D and 3D datasets show improvements in reconstruction accuracy, representational capacity and training speed compared to baselines.
arXiv Detail & Related papers (2022-02-09T20:33:37Z) - NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction [88.02850205432763]
We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs.
Existing neural surface reconstruction approaches, such as DVR and IDR, require foreground mask as supervision.
We observe that the conventional volume rendering method causes inherent geometric errors for surface reconstruction.
We propose a new formulation that is free of bias in the first order of approximation, thus leading to more accurate surface reconstruction even without the mask supervision.
arXiv Detail & Related papers (2021-06-20T12:59:42Z) - UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for
Multi-View Reconstruction [61.17219252031391]
We present a novel method for reconstructing surfaces from multi-view images using Neural implicit 3D representations.
Our key insight is that implicit surface models and radiance fields can be formulated in a unified way, enabling both surface and volume rendering.
Our experiments demonstrate that we outperform NeRF in terms of reconstruction quality while performing on par with IDR without requiring masks.
arXiv Detail & Related papers (2021-04-20T15:59:38Z) - Neural Lumigraph Rendering [33.676795978166375]
State-of-the-art (SOTA) neural volume rendering approaches are slow to train and require minutes of inference (i.e., rendering) time for high image resolutions.
We adopt high-capacity neural scene representations with periodic activations for jointly optimizing an implicit surface and a radiance field of a scene supervised exclusively with posed 2D images.
Our neural rendering pipeline accelerates SOTA neural volume rendering by about two orders of magnitude and our implicit surface representation is unique in allowing us to export a mesh with view-dependent texture information.
arXiv Detail & Related papers (2021-03-22T03:46:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.