論文の概要: AI Assisted Cervical Cancer Screening for Cytology Samples in Developing Countries
- arxiv url: http://arxiv.org/abs/2504.20435v1
- Date: Tue, 29 Apr 2025 05:18:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.759489
- Title: AI Assisted Cervical Cancer Screening for Cytology Samples in Developing Countries
- Title(参考訳): 発展途上国における細胞診検査のAIによる支援
- Authors: Love Panta, Suraj Prasai, Karishma Malla Vaidya, Shyam Shrestha, Suresh Manandhar,
- Abstract要約: 頸部がんは依然として重大な健康上の問題であり、高い死亡率と死亡率がある。
従来の液体ベース細胞学(LBC)は、労働集約的なプロセスであり、専門家の病理医を必要とし、エラーを生じやすい。
本稿では, 低コストな生体顕微鏡と, 簡易かつ効率的なAIアルゴリズムを統合し, 自動全すべり解析を行う革新的な手法を提案する。
- 参考スコア(独自算出の注目度): 0.18472148461613155
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cervical cancer remains a significant health challenge, with high incidence and mortality rates, particularly in transitioning countries. Conventional Liquid-Based Cytology(LBC) is a labor-intensive process, requires expert pathologists and is highly prone to errors, highlighting the need for more efficient screening methods. This paper introduces an innovative approach that integrates low-cost biological microscopes with our simple and efficient AI algorithms for automated whole-slide analysis. Our system uses a motorized microscope to capture cytology images, which are then processed through an AI pipeline involving image stitching, cell segmentation, and classification. We utilize the lightweight UNet-based model involving human-in-the-loop approach to train our segmentation model with minimal ROIs. CvT-based classification model, trained on the SIPaKMeD dataset, accurately categorizes five cell types. Our framework offers enhanced accuracy and efficiency in cervical cancer screening compared to various state-of-art methods, as demonstrated by different evaluation metrics.
- Abstract(参考訳): 頸部がんは依然として重要な健康上の課題であり、特に移行途上国では高い死亡率と死亡率がある。
従来の液体ベース細胞学(LBC)は労働集約的なプロセスであり、専門家の病理医を必要とし、より効率的なスクリーニング方法の必要性を強調している。
本稿では, 低コストな生体顕微鏡と, 簡易かつ効率的なAIアルゴリズムを統合し, 自動全すべり解析を行う革新的な手法を提案する。
本システムでは, 細胞像を光学顕微鏡でキャプチャし, 画像縫合, 細胞分画, 分類を含むAIパイプラインで処理する。
我々は、UNetベースの軽量モデルを用いて、最小ROIでセグメンテーションモデルをトレーニングする。
SIPaKMeDデータセットに基づいてトレーニングされたCvTベースの分類モデルは、5つの細胞タイプを正確に分類する。
本フレームワークは, 子宮頸癌検診における検診の精度と効率を, 異なる評価基準で示すように, 各種検査方法と比較して高めている。
関連論文リスト
- GS-TransUNet: Integrated 2D Gaussian Splatting and Transformer UNet for Accurate Skin Lesion Analysis [44.99833362998488]
本稿では,2次元ガウススプラッティングとTransformer UNetアーキテクチャを組み合わせた皮膚癌自動診断手法を提案する。
セグメンテーションと分類の精度は著しく向上した。
この統合は、新しいベンチマークをこの分野に設定し、マルチタスク医療画像解析手法のさらなる研究の可能性を強調している。
論文 参考訳(メタデータ) (2025-02-23T23:28:47Z) - Improving Sickle Cell Disease Classification: A Fusion of Conventional Classifiers, Segmented Images, and Convolutional Neural Networks [0.31457219084519006]
本稿では, 従来の分類器, セグメント化画像, CNNを併用して, 病原細胞疾患の自動分類を行う手法を提案する。
以上の結果から,SVMを用いたセグメント画像とCNN機能を用いることで96.80%の精度が得られた。
論文 参考訳(メタデータ) (2024-12-23T20:42:15Z) - Towards a Comprehensive Benchmark for Pathological Lymph Node Metastasis in Breast Cancer Sections [21.75452517154339]
我々は1,399枚のスライド画像(WSI)と、Camelyon-16とCamelyon-17データセットのラベルを再処理した。
再発腫瘍領域の大きさから,2重複癌検診を4段階に改善した。
論文 参考訳(メタデータ) (2024-11-16T09:19:24Z) - Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
非小細胞肺癌(NSCLC)は、世界中のがん死亡の主な原因である。
本稿では, 融合医療画像(CT, PET)と臨床健康記録, ゲノムデータとを合成する, マルチモーダルデータの革新的な統合について紹介する。
NSCLCの検出と分類精度の大幅な向上により,本研究は既存のアプローチを超越している。
論文 参考訳(メタデータ) (2024-09-27T12:59:29Z) - Neural Cellular Automata for Lightweight, Robust and Explainable Classification of White Blood Cell Images [40.347953893940044]
ニューラルセルオートマトン(NCA)を用いた白血球分類の新しいアプローチを提案する。
NCAに基づく手法はパラメータの面で著しく小さく,ドメインシフトに対する堅牢性を示す。
その結果,NAAは画像分類に利用でき,従来の手法の課題に対処できることがわかった。
論文 参考訳(メタデータ) (2024-04-08T14:59:53Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
我々は、注意に基づくMILをトレーニングし、データセット内の各画像に対する信頼度を算出し、専門家のアノテーションに対して最も不確実なWSIを選択する。
新たな注意誘導損失により、各クラスにアノテートされた領域がほとんどない、トレーニングされたモデルの精度が向上する。
将来的には、病理組織学における癌分類の臨床的に関連する文脈において、MILモデルのトレーニングに重要な貢献をする可能性がある。
論文 参考訳(メタデータ) (2023-03-02T15:18:58Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - Oral cancer detection and interpretation: Deep multiple instance
learning versus conventional deep single instance learning [2.2612425542955292]
口腔癌(OC)診断の現在の医療基準は、口腔から採取した組織標本の組織学的検査である。
このアプローチを臨床ルーチンに導入するには、専門家の欠如や労働集約的な作業といった課題が伴う。
私たちは、患者1人あたりのラベルだけで癌を確実に検出できるAIベースの方法に興味を持っています。
論文 参考訳(メタデータ) (2022-02-03T15:04:26Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for
Cervical Cytology Image Classification [1.6986898305640261]
頸がんの単細胞画像とスライド画像の分類を完全自動化するコンピュータ支援診断ツールを提案する。
我々は、Sugeno Fuzzy Integralを使用して、Inception v3、DenseNet-161、ResNet-34という3つの人気のあるディープラーニングモデルの意思決定スコアをアンサンブルする。
論文 参考訳(メタデータ) (2021-08-21T08:41:41Z) - OncoPetNet: A Deep Learning based AI system for mitotic figure counting
on H&E stained whole slide digital images in a large veterinary diagnostic
lab setting [47.38796928990688]
OncoPetNetの開発において,複数の最先端ディープラーニング技術を用いて病理組織像分類と有糸体像検出を行った。
提案システムは,14種類の癌に対して,ヒトのエキスパートベースラインと比較して,41例の有糸分裂計数性能を有意に向上させた。
デプロイでは、2つのセンターで1日3,323枚のデジタル全スライド画像を処理する高スループット獣医診断サービスにおいて、効果的な0.27分/スライダー推論が達成された。
論文 参考訳(メタデータ) (2021-08-17T20:01:33Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。