論文の概要: LymphAtlas- A Unified Multimodal Lymphoma Imaging Repository Delivering AI-Enhanced Diagnostic Insight
- arxiv url: http://arxiv.org/abs/2504.20454v1
- Date: Tue, 29 Apr 2025 06:10:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.771802
- Title: LymphAtlas- A Unified Multimodal Lymphoma Imaging Repository Delivering AI-Enhanced Diagnostic Insight
- Title(参考訳): LymphAtlas-AIにより増強された診断インサイトを提供する統一型マルチモーダルリンパ腫画像レポジトリ
- Authors: Jiajun Ding, Beiyao Zhu, Xiaosheng Liu, Lishen Zhang, Zhao Liu,
- Abstract要約: 本研究はPET代謝情報をCT解剖学的構造と統合し,PET/CT検査に基づく悪性リンパ腫の3次元マルチモーダルセグメンテーションデータセットを構築した。
2011年3月から2024年5月までの間に得られた483件の検査データセットを, 220件の患者を対象に遡及的に収集した。
- 参考スコア(独自算出の注目度): 3.746123328463508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study integrates PET metabolic information with CT anatomical structures to establish a 3D multimodal segmentation dataset for lymphoma based on whole-body FDG PET/CT examinations, which bridges the gap of the lack of standardised multimodal segmentation datasets in the field of haematological malignancies. We retrospectively collected 483 examination datasets acquired between March 2011 and May 2024, involving 220 patients (106 non-Hodgkin lymphoma, 42 Hodgkin lymphoma); all data underwent ethical review and were rigorously de-identified. Complete 3D structural information was preserved during data acquisition, preprocessing and annotation, and a high-quality dataset was constructed based on the nnUNet format. By systematic technical validation and evaluation of the preprocessing process, annotation quality and automatic segmentation algorithm, the deep learning model trained based on this dataset is verified to achieve accurate segmentation of lymphoma lesions in PET/CT images with high accuracy, good robustness and reproducibility, which proves the applicability and stability of this dataset in accurate segmentation and quantitative analysis. The deep fusion of PET/CT images achieved with this dataset not only significantly improves the accurate portrayal of the morphology, location and metabolic features of tumour lesions, but also provides solid data support for early diagnosis, clinical staging and personalized treatment, and promotes the development of automated image segmentation and precision medicine based on deep learning. The dataset and related resources are available at https://github.com/SuperD0122/LymphAtlas-.
- Abstract(参考訳): 本研究はPET代謝情報をCT解剖学的構造と統合し,全身FDG PET/CT検査に基づく悪性リンパ腫の3次元マルチモーダルセグメンテーションデータセットを構築した。
220例(非ホジキンリンパ腫106例,ホジキンリンパ腫42例)を対象とし,2011年3月から2024年5月までに収集した483件の検査データセットを回顧的に収集した。
データ取得、前処理、アノテーションの間に完全な3D構造情報が保存され、nnUNetフォーマットに基づいて高品質なデータセットが構築された。
このデータセットに基づいて訓練された深層学習モデルは,前処理プロセス,アノテーション品質,自動セグメンテーションアルゴリズムの体系的技術的検証と評価により,PET/CT画像における悪性リンパ腫病変の正確なセグメンテーションを高精度,良好なロバスト性,再現性で達成し,精度の高いセグメンテーションおよび定量分析におけるこのデータセットの適用性と安定性を実証する。
このデータセットで達成されたPET/CT画像の深層融合は、腫瘍病変の形態、位置、代謝の特徴の正確な描写を著しく改善するだけでなく、早期診断、臨床ステージング、パーソナライズされた治療のための堅固なデータサポートを提供し、深層学習に基づく自動画像分割および精密医療の発展を促進する。
データセットと関連するリソースはhttps://github.com/SuperD0122/LymphAtlas-.comで公開されている。
関連論文リスト
- A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
完全に注釈付きCTデータセットは存在せず、すべての解剖学がトレーニングのために記述されている。
完全解剖を分割できる連続学習駆動CTモデルを提案する。
単体CT分割モデルCL-Netは, 臨床的に包括的に包括的に235個の粒状体解剖の集合を高精度に分割することができる。
論文 参考訳(メタデータ) (2025-03-16T23:55:02Z) - A Data-Efficient Pan-Tumor Foundation Model for Oncology CT Interpretation [17.993838581176902]
PASTAは、46の腫瘍学タスクのうち45の最先端のパフォーマンスを達成するパン腫瘍CT基盤モデルである。
PASTA-Genは、ピクセルレベルのアノテート病変とペア構造レポートを備えた3万個のCTスキャンの包括的なデータセットを生成する。
論文 参考訳(メタデータ) (2025-02-10T05:45:03Z) - ScaleMAI: Accelerating the Development of Trusted Datasets and AI Models [46.80682547774335]
我々はAI統合データキュレーションとアノテーションのエージェントであるScaleMAIを提案する。
まず、ScaleMAIは25,362個のCTスキャンを作成した。
第2に、プログレッシブなヒューマン・イン・ザ・ループのイテレーションを通じて、ScaleMAIはFragship AI Modelを提供する。
論文 参考訳(メタデータ) (2025-01-06T22:12:00Z) - AutoPET Challenge: Tumour Synthesis for Data Augmentation [26.236831356731017]
我々は,CT画像のためのDiffTumor法を適用し,病変のあるPET-CT画像を生成する。
提案手法では,AutoPETデータセット上で生成モデルをトレーニングし,トレーニングデータの拡張に使用する。
以上の結果から,拡張データセットでトレーニングしたモデルでは,Diceスコアが向上し,データ拡張アプローチの可能性が示された。
論文 参考訳(メタデータ) (2024-09-12T14:23:19Z) - Graph-based multimodal multi-lesion DLBCL treatment response prediction
from PET images [0.0]
診断後, 標準フロントライン治療における非対応患者数(30~40%)は依然として顕著である。
本研究は,適応治療を必要とする高リスク患者を特定するためのコンピュータ支援アプローチを開発することを目的とする。
複数の病変からのイメージング情報を組み合わせた最近のグラフニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2023-10-25T08:16:45Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
そこで我々は,高品質な病理像を生成するためのテキスト条件付き遅延拡散モデルPathLDMを紹介した。
提案手法は画像とテキストデータを融合して生成プロセスを強化する。
我々は,TCGA-BRCAデータセット上でのテキスト・ツー・イメージ生成において,SoTA FIDスコア7.64を達成し,FID30.1と最も近いテキスト・コンディショナブル・コンペティタを著しく上回った。
論文 参考訳(メタデータ) (2023-09-01T22:08:32Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - Mediastinal Lymph Node Detection and Segmentation Using Deep Learning [1.7188280334580195]
臨床ではCT(Computed tomography)とPET(positron emission tomography)が異常リンパ節(LN)を検出する
深層畳み込みニューラルネットワークは、しばしば医療写真にアイテムを分割する。
良質な深層学習手法であるUNetは、縦隔リンパ節の分節と検出のための戦略に基づいて、双線形および全一般化変異(TGV)を用いて修正された。
修正されたUNetはテクスチャの不連続を維持し、ノイズの多い領域を選択し、バックプロパゲーションを通じて適切なバランスポイントを検索し、画像の解像度を再現する。
論文 参考訳(メタデータ) (2022-11-24T02:55:20Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z) - Evidential segmentation of 3D PET/CT images [20.65495780362289]
3D PET/CT画像におけるリンパ腫のセグメント化には、信念関数に基づくセグメンテーション法が提案されている。
アーキテクチャは特徴抽出モジュールと明白なセグメンテーション(ES)モジュールで構成されている。
びまん性大細胞性b細胞リンパ腫173例のデータベース上で評価した。
論文 参考訳(メタデータ) (2021-04-27T16:06:27Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。