Antidote: A Unified Framework for Mitigating LVLM Hallucinations in Counterfactual Presupposition and Object Perception
- URL: http://arxiv.org/abs/2504.20468v1
- Date: Tue, 29 Apr 2025 07:05:24 GMT
- Title: Antidote: A Unified Framework for Mitigating LVLM Hallucinations in Counterfactual Presupposition and Object Perception
- Authors: Yuanchen Wu, Lu Zhang, Hang Yao, Junlong Du, Ke Yan, Shouhong Ding, Yunsheng Wu, Xiaoqiang Li,
- Abstract summary: We discuss the vulnerability of LVLMs in solving counterfactual presupposition questions (CPQs)<n>We introduce "Antidote", a unified, synthetic data-driven post-training framework for mitigating both types of hallucination.<n>We construct "CP-Bench", a novel benchmark to evaluate LVLMs' ability to correctly handle CPQs and produce factual responses.
- Score: 28.351994916635423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Vision-Language Models (LVLMs) have achieved impressive results across various cross-modal tasks. However, hallucinations, i.e., the models generating counterfactual responses, remain a challenge. Though recent studies have attempted to alleviate object perception hallucinations, they focus on the models' response generation, and overlooking the task question itself. This paper discusses the vulnerability of LVLMs in solving counterfactual presupposition questions (CPQs), where the models are prone to accept the presuppositions of counterfactual objects and produce severe hallucinatory responses. To this end, we introduce "Antidote", a unified, synthetic data-driven post-training framework for mitigating both types of hallucination above. It leverages synthetic data to incorporate factual priors into questions to achieve self-correction, and decouple the mitigation process into a preference optimization problem. Furthermore, we construct "CP-Bench", a novel benchmark to evaluate LVLMs' ability to correctly handle CPQs and produce factual responses. Applied to the LLaVA series, Antidote can simultaneously enhance performance on CP-Bench by over 50%, POPE by 1.8-3.3%, and CHAIR & SHR by 30-50%, all without relying on external supervision from stronger LVLMs or human feedback and introducing noticeable catastrophic forgetting issues.
Related papers
- HalluLens: LLM Hallucination Benchmark [49.170128733508335]
Large language models (LLMs) often generate responses that deviate from user input or training data, a phenomenon known as "hallucination"
This paper introduces a comprehensive hallucination benchmark, incorporating both new extrinsic and existing intrinsic evaluation tasks.
arXiv Detail & Related papers (2025-04-24T13:40:27Z) - A Topic-level Self-Correctional Approach to Mitigate Hallucinations in MLLMs [34.71750379630014]
We introduce Topic-level Preference Overwriting (TPO), a self-correctional approach that guide the model itself to mitigate its own hallucination at the topic level.<n>Results show TPO achieves state-of-the-art performance in trustworthiness, significantly reducing the object hallucinations by 92% and overall hallucinations by 38%.
arXiv Detail & Related papers (2024-11-26T09:42:07Z) - A Debate-Driven Experiment on LLM Hallucinations and Accuracy [7.821303946741665]
This study investigates the phenomenon of hallucination in large language models (LLMs)
Multiple instances of GPT-4o-Mini models engage in a debate-like interaction prompted with questions from the TruthfulQA dataset.
One model is deliberately instructed to generate plausible but false answers while the other models are asked to respond truthfully.
arXiv Detail & Related papers (2024-10-25T11:41:27Z) - Pelican: Correcting Hallucination in Vision-LLMs via Claim Decomposition and Program of Thought Verification [13.081342795985003]
Pelican is a framework designed to detect and mitigate hallucinations through claim verification.
Our experiments reveal a drop in hallucination rate by 8% - 32% across various baseline LVLMs and a 27% drop compared to approaches proposed for hallucination mitigation on MMHal-Bench.
arXiv Detail & Related papers (2024-07-02T15:17:44Z) - MACAROON: Training Vision-Language Models To Be Your Engaged Partners [95.32771929749514]
Large vision-language models (LVLMs) generate detailed responses even when questions are ambiguous or unlabeled.
In this study, we aim to shift LVLMs from passive answer providers to proactive engaged partners.
We introduce MACAROON, self-iMaginAtion for ContrAstive pReference OptimizatiON, which instructs LVLMs to autonomously generate contrastive response pairs for unlabeled questions.
arXiv Detail & Related papers (2024-06-20T09:27:33Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - FGAIF: Aligning Large Vision-Language Models with Fine-grained AI Feedback [16.24562885483636]
We propose an innovative method to align modalities in Large Vision-Language Models (LVLMs) through Fine-Grained Artificial Intelligence Feedback (FGAIF)
Specifically, we first utilize AI tools to predict the types of hallucination for each segment in the response and obtain a collection of fine-grained feedback. Then, based on the collected reward data, three specialized reward models are trained to produce dense rewards. Finally, a novel fine-grained feedback module is integrated into the Proximal Policy Optimization (PPO) algorithm.
arXiv Detail & Related papers (2024-04-07T19:00:45Z) - Logical Closed Loop: Uncovering Object Hallucinations in Large Vision-Language Models [52.957842999317506]
Object hallucination refers to the phenomenon that the LVLMs claim non-existent objects in the image.
We propose a Logical Closed Loop-based framework for Object Hallucination Detection and Mitigation, namely LogicCheckGPT.
As a plug-and-play method, it can be seamlessly applied to all existing LVLMs.
arXiv Detail & Related papers (2024-02-18T15:28:39Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Detecting and Preventing Hallucinations in Large Vision Language Models [4.7264116948935975]
M-HalDetect is the first multi-modal hallucination detection dataset for detailed image descriptions.
We train fine-grained multi-modal reward models from InstructBLIP and evaluate their effectiveness with best-of-n rejection sampling.
We find that our reward model generalizes to other multi-modal models, reducing hallucinations in LLaVA and mPLUG-OWL by 15% and 57% respectively.
arXiv Detail & Related papers (2023-08-11T21:35:20Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
This work presents the first systematic study on object hallucination of large vision-language models (LVLMs)
We find that LVLMs tend to generate objects that are inconsistent with the target images in the descriptions.
We propose a polling-based query method called POPE to evaluate the object hallucination.
arXiv Detail & Related papers (2023-05-17T16:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.