A Debate-Driven Experiment on LLM Hallucinations and Accuracy
- URL: http://arxiv.org/abs/2410.19485v1
- Date: Fri, 25 Oct 2024 11:41:27 GMT
- Title: A Debate-Driven Experiment on LLM Hallucinations and Accuracy
- Authors: Ray Li, Tanishka Bagade, Kevin Martinez, Flora Yasmin, Grant Ayala, Michael Lam, Kevin Zhu,
- Abstract summary: This study investigates the phenomenon of hallucination in large language models (LLMs)
Multiple instances of GPT-4o-Mini models engage in a debate-like interaction prompted with questions from the TruthfulQA dataset.
One model is deliberately instructed to generate plausible but false answers while the other models are asked to respond truthfully.
- Score: 7.821303946741665
- License:
- Abstract: Large language models (LLMs) have achieved a degree of success in generating coherent and contextually relevant text, yet they remain prone to a significant challenge known as hallucination: producing information that is not substantiated by the input or external knowledge. Previous efforts to mitigate hallucinations have focused on techniques such as fine-tuning models on high-quality datasets, incorporating fact-checking mechanisms, and developing adversarial training methods. While these approaches have shown some promise, they often address the issue at the level of individual model outputs, leaving unexplored the effects of inter-model interactions on hallucination. This study investigates the phenomenon of hallucination in LLMs through a novel experimental framework where multiple instances of GPT-4o-Mini models engage in a debate-like interaction prompted with questions from the TruthfulQA dataset. One model is deliberately instructed to generate plausible but false answers while the other models are asked to respond truthfully. The experiment is designed to assess whether the introduction of misinformation by one model can challenge the truthful majority to better justify their reasoning, improving performance on the TruthfulQA benchmark. The findings suggest that inter-model interactions can offer valuable insights into improving the accuracy and robustness of LLM outputs, complementing existing mitigation strategies.
Related papers
- Iter-AHMCL: Alleviate Hallucination for Large Language Model via Iterative Model-level Contrastive Learning [16.883679810267342]
Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
This paper introduces a novel approach called Iterative Model-level Contrastive Learning (Iter-AHMCL) to address hallucination.
arXiv Detail & Related papers (2024-10-16T00:15:40Z) - Investigating the Impact of Model Complexity in Large Language Models [3.7919508292745676]
Large Language Models (LLMs) based on the pre-trained fine-tuning paradigm have become pivotal in solving natural language processing tasks.
In this paper, we focus on autoregressive LLMs and propose to employ Hidden Markov Models (HMMs) to model them.
arXiv Detail & Related papers (2024-10-01T13:53:44Z) - Towards Building a Robust Knowledge Intensive Question Answering Model with Large Language Models [4.4849006637642805]
Presence of noise and errors in retrieved information poses challenges to the robustness of LLMs.
To address the issue of model accuracy decline caused by noisy external information, we propose a data augmentation-based fine-tuning method.
We have conducted experiments on both existing LLMs and our approach, the results are evaluated by GPT-4.
arXiv Detail & Related papers (2024-09-09T07:32:30Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
Large Vision-Language Models (LVLMs) suffer from hallucination issues, wherein the models generate plausible-sounding but factually incorrect outputs.
Existing benchmarks are often limited in scope, focusing mainly on object hallucinations.
We introduce a multi-dimensional benchmark covering objects, attributes, and relations, with challenging images selected based on associative biases.
arXiv Detail & Related papers (2024-04-22T04:49:22Z) - Prescribing the Right Remedy: Mitigating Hallucinations in Large Vision-Language Models via Targeted Instruction Tuning [15.156359255401812]
We propose a targeted instruction data generation framework named DFTG that tailored to the hallucination specificity of different models.
The experimental results on hallucination benchmarks demonstrate that the targeted instruction data generated by our method are more effective in mitigating hallucinations compared to previous datasets.
arXiv Detail & Related papers (2024-04-16T07:14:32Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraph is a model-based white-box detection and forecasting approach for large language models.
We show that hallucination can be effectively detected by analyzing the LLM's internal state transition dynamics.
Our work paves a new way for model-based white-box analysis of LLMs, motivating the research community to further explore, understand, and refine the intricate dynamics of LLM behaviors.
arXiv Detail & Related papers (2024-04-06T20:02:20Z) - Unfamiliar Finetuning Examples Control How Language Models Hallucinate [75.03210107477157]
Large language models are known to hallucinate when faced with unfamiliar queries.
We find that unfamiliar examples in the models' finetuning data are crucial in shaping these errors.
Our work further investigates RL finetuning strategies for improving the factuality of long-form model generations.
arXiv Detail & Related papers (2024-03-08T18:28:13Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.