Initialization of Neutral and Charged Exciton Spin States in a Telecom-Emitting Quantum Dot
- URL: http://arxiv.org/abs/2504.20497v1
- Date: Tue, 29 Apr 2025 07:38:17 GMT
- Title: Initialization of Neutral and Charged Exciton Spin States in a Telecom-Emitting Quantum Dot
- Authors: Giora Peniakov, Johannes Michl, Mohamed Helal, Raphael Joos, Michael Jetter, Simone L. Portalupi, Peter Michler, Sven Höfling, Tobias Huber-Loyola,
- Abstract summary: Photonic cluster states are highly entangled states that allow for photonic quantum computing and memory-less quantum repeaters.<n>A key ingredient that is still missing is an appropriate optical excitation method.<n>We report on developing such a method based on a quasi-resonant p-shell excitation for a telecom-C-band-emitting quantum dot.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photonic cluster states are highly entangled states that allow for photonic quantum computing and memory-less quantum repeaters. Their generation has been recently demonstrated using semiconductor quantum dots emitting at the 900 nm wavelength range. However, a similar demonstration at the communication-optimal telecom range has remained elusive. A key ingredient that is still missing is an appropriate optical excitation method. A central requirement of such a method is to allow an arbitrary spin initialization of quantum dot excitonic complexes. In this work, we report on developing such a method based on a quasi-resonant p-shell excitation for a telecom-C-band-emitting quantum dot. We show qubit writing of a neutral exciton and spin-preserving excitation of a negative trion. Using the Larmor precession of the negative trion under an externally applied magnetic field, we determine the in-plane g-factors of both the electron and the hole in the investigated quantum dot. In addition, we measure a lower bound on the hole coherence time, $T_{2}^{*}>6.4$ ns, boosting its candidacy as a sound photon entangler for more advanced quantum photonic schemes.
Related papers
- On demand single photon generation and coherent control of excitons from resonantly driven nanowire quantum dots [2.3301636913156467]
nanowire-based quantum dot sources are popular due to their potential for on-chip hybrid integration.
We demonstrate on-demand single-photon generation from resonantly excited InAsP/InP nanowire quantum dots.
It paves the way for hybrid quantum photonic integration, enabling spin-photon entanglement and matter memories on-chip.
arXiv Detail & Related papers (2024-09-23T12:29:41Z) - A photonic source of heralded GHZ states [0.0]
We build a high-rate six-photon source from a solid-state quantum emitter and a stable polarisation-based interferometer.
Our results initiate a path for scalable entangling operations using heralded linear-optics implementations.
arXiv Detail & Related papers (2023-08-10T17:17:28Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Deterministic Free-Propagating Photonic Qubits with Negative Wigner
Functions [0.0]
Coherent states ubiquitous in classical and quantum communications, squeezed states used in quantum sensing, and even highly-entangled states studied in the context of quantum computing can be produced deterministically.
We describe the first fully deterministic preparation of non-Gaussian Wigner-negative states of light, obtained by mapping the internal state of an intracavdberg superatom onto an optical qubit.
arXiv Detail & Related papers (2022-09-05T16:37:42Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Nonlinear down-conversion in a single quantum dot [0.0]
Photonic quantum technologies are on the verge of becoming commercially available.
One crucial building block are tailored nanoscale integratable quantum light sources.
We show an emitter-independent method to tailor and control the properties of the single photon emission.
arXiv Detail & Related papers (2021-05-26T08:31:16Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Low-Noise GaAs Quantum Dots for Quantum Photonics [0.45507178426690204]
GaAs quantum dots in AlGaAs can be matched in frequency to a rubidium-based photon memory.
Our work establishes a materials platform for low-noise quantum photonics close to the red part of the spectrum.
arXiv Detail & Related papers (2020-02-28T19:00:09Z) - Quantum teleportation with hybrid entangled resources prepared from
heralded quantum states [68.8204255655161]
We propose the generation of a hybrid entangled resource (HER)
The work includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated.
No spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
arXiv Detail & Related papers (2020-02-07T21:20:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.