Nonlinear down-conversion in a single quantum dot
- URL: http://arxiv.org/abs/2105.12393v1
- Date: Wed, 26 May 2021 08:31:16 GMT
- Title: Nonlinear down-conversion in a single quantum dot
- Authors: B. Jonas, D. Heinze, E. Sch\"oll, P. Kallert, T. Langer, S. Krehs, A.
Widhalm, K. D. J\"ons, D. Reuter, S. Schumacher and A. Zrenner
- Abstract summary: Photonic quantum technologies are on the verge of becoming commercially available.
One crucial building block are tailored nanoscale integratable quantum light sources.
We show an emitter-independent method to tailor and control the properties of the single photon emission.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photonic quantum technologies$^1$, with applications in quantum
communication, sensing as well as quantum simulation and computing, are on the
verge of becoming commercially available. One crucial building block are
tailored nanoscale integratable quantum light sources, matching the specific
needs of use-cases. Several different approaches to realize solid-state quantum
emitters$^2$ with high performance$^3$ have been pursued. However, the
properties of the emitted single photons are always defined by the individual
quantum light source and despite numerous quantum emitter tuning
techniques$^{4-7}$, scalability is still a major challenge. Here we show an
emitter-independent method to tailor and control the properties of the single
photon emission. We demonstrate a laser-controlled down-conversion process from
an excited state of a quantum three-level system$^8$. Starting from a biexciton
state, a tunable control laser field defines a virtual state in a stimulated
process. From there, spontaneous emission to the ground state leads to
optically controlled single photon emission. Based on this concept, we
demonstrate energy tuning of the single photon emission with a control laser
field. The nature of the involved quantum states furthermore provides a unique
basis for the future control of polarization and bandwidth, as predicted by
theory$^{9,10}$. Our demonstration marks an important step towards tailored
single photon emission from a photonic quantum system based on quantum optical
principles.
Related papers
- Deterministic and reconfigurable graph state generation with a single solid-state quantum emitter [0.0]
We demonstrate deterministic and reconfigurable graph state generation with optical solid-state integrated quantum emitters.
We perform quantum state tomography of two successive photons, measuring Bell state fidelities up to 0.80$pm$0.04 and concurrences up to 0.69$pm$0.09.
This simple optical scheme, compatible with commercially available quantum dot-based single photon sources, brings us a step closer to fault-tolerant quantum computing with spins and photons.
arXiv Detail & Related papers (2024-10-30T23:59:54Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - A Quantum Repeater Platform based on Single SiV$^-$ Centers in Diamond
with Cavity-Assisted, All-Optical Spin Access and Fast Coherent Driving [45.82374977939355]
Quantum key distribution enables secure communication based on the principles of quantum mechanics.
Quantum repeaters are required to establish large-scale quantum networks.
We present an efficient spin-photon interface for quantum repeaters.
arXiv Detail & Related papers (2022-10-28T14:33:24Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Quantum Interference of Identical Photons from Remote GaAs Quantum Dots [0.45507178426690204]
Photonic quantum technology provides a viable route to quantum communication, quantum simulation, and quantum information processing.
Recent progress has seen the realisation of boson sampling using 20 single-photons and quantum key distribution over hundreds of kilometres.
For applications, a significant roadblock is the poor quantum coherence upon interfering single photons created by independent quantum dots.
Here, we demonstrate two-photon interference with near-unity visibility ($93.0pm0.8$)% using photons from two completely separate GaAs quantum dots.
arXiv Detail & Related papers (2021-06-07T18:00:03Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Heralded non-destructive quantum entangling gate with single-photon
sources [5.881327681338198]
We demonstrate a heralded controlled-NOT (CNOT) operation between two single photons for the first time.
Our results are an important step towards the development of photon-photon quantum logic gates.
arXiv Detail & Related papers (2020-10-28T06:50:23Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.