論文の概要: Digital Shielding for Cross-Domain Wi-Fi Signal Adaptation using Relativistic Average Generative Adversarial Network
- arxiv url: http://arxiv.org/abs/2504.20568v1
- Date: Tue, 29 Apr 2025 09:18:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.821455
- Title: Digital Shielding for Cross-Domain Wi-Fi Signal Adaptation using Relativistic Average Generative Adversarial Network
- Title(参考訳): 相対論的平均生成逆数ネットワークを用いたクロスドメインWi-Fi信号適応のためのディジタルシールド
- Authors: Danilo Avola, Federica Bruni, Gian Luca Foresti, Daniele Pannone, Amedeo Ranaldi,
- Abstract要約: 本稿では,物理信号遮蔽にインスパイアされた,Wi-Fi信号のクロスドメイン適応のための新しいディープラーニングモデルを提案する。
このシステムは96%の精度を達成し、強力な物質識別能力を示した。
- 参考スコア(独自算出の注目度): 13.808977762165823
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Wi-Fi sensing uses radio-frequency signals from Wi-Fi devices to analyze environments, enabling tasks such as tracking people, detecting intrusions, and recognizing gestures. The rise of this technology is driven by the IEEE 802.11bf standard and growing demand for tools that can ensure privacy and operate through obstacles. However, the performance of Wi-Fi sensing is heavily influenced by environmental conditions, especially when extracting spatial and temporal features from the surrounding scene. A key challenge is achieving robust generalization across domains, ensuring stable performance even when the sensing environment changes significantly. This paper introduces a novel deep learning model for cross-domain adaptation of Wi-Fi signals, inspired by physical signal shielding. The model uses a Relativistic average Generative Adversarial Network (RaGAN) with Bidirectional Long Short-Term Memory (Bi-LSTM) architectures for both the generator and discriminator. To simulate physical shielding, an acrylic box lined with electromagnetic shielding fabric was constructed, mimicking a Faraday cage. Wi-Fi signal spectra were collected from various materials both inside (domain-free) and outside (domain-dependent) the box to train the model. A multi-class Support Vector Machine (SVM) was trained on domain-free spectra and tested on signals denoised by the RaGAN. The system achieved 96% accuracy and demonstrated strong material discrimination capabilities, offering potential for use in security applications to identify concealed objects based on their composition.
- Abstract(参考訳): Wi-Fiセンサーは、Wi-Fiデバイスからの電波信号を使用して環境を分析し、人を追跡する、侵入を検出する、ジェスチャーを認識するといったタスクを可能にする。
この技術の台頭はIEEE 802.11bf標準によって推進され、プライバシの確保と障害の操作を可能にするツールへの需要が高まっている。
しかし,Wi-Fiセンサの性能は環境条件,特に周辺環境から空間的・時間的特徴を抽出する場合に大きく影響される。
重要な課題は、ドメイン間の堅牢な一般化を実現し、センシング環境が著しく変化しても安定したパフォーマンスを確保することである。
本稿では,物理信号遮蔽にインスパイアされた,Wi-Fi信号のクロスドメイン適応のための新しいディープラーニングモデルを提案する。
このモデルは、ジェネレータと識別器の両方に双方向長短期記憶(Bi-LSTM)アーキテクチャを備えた相対論的平均生成適応ネットワーク(RaGAN)を使用する。
物理的遮蔽を模擬するため、ファラデーケージを模した電磁遮蔽布を並べたアクリルボックスが作られた。
Wi-Fi信号スペクトルは、内部(ドメインに依存しない)と外部(ドメインに依存しない)の両方の材料から収集され、モデルを訓練した。
マルチクラスサポートベクトルマシン (SVM) はドメインフリーのスペクトルで訓練され、RaGANによってデノベートされた信号でテストされた。
このシステムは96%の精度を達成し、強力な物質識別能力を示した。
関連論文リスト
- Radar Signal Recognition through Self-Supervised Learning and Domain Adaptation [48.265859815346985]
RFサンプルとラベルを限定した環境下でのレーダ信号認識を強化するための自己教師付き学習(SSL)手法を提案する。
具体的には,各種RF領域のベースバンド内位相および2次(I/Q)信号に対する事前学習マスク付きオートエンコーダ(MAE)について検討する。
その結果,ドメイン適応型軽量自己教師型ResNetモデルでは,1ショットの分類精度が最大17.5%向上した。
論文 参考訳(メタデータ) (2025-01-07T01:35:56Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
デバイスレスワイヤレスセンシングは、幅広い没入型人間機械対話型アプリケーションをサポートする可能性から、近年、大きな関心を集めている。
無線信号におけるデータの均一性と分散センシングにおけるデータプライバシ規制は、広域ネットワークシステムにおける無線センシングの広範な適用を妨げる主要な課題であると考えられている。
そこで本研究では,ラベル付きデータを使わずに,一箇所ないし限られた箇所で構築されたモデルを直接他の場所に転送できるゼロショット無線センシングソリューションを提案する。
論文 参考訳(メタデータ) (2023-12-08T13:50:30Z) - Faster Region-Based CNN Spectrum Sensing and Signal Identification in
Cluttered RF Environments [0.7734726150561088]
高速領域ベース畳み込みニューラルネットワーク(FRCNN)を1次元(1次元)信号処理と電磁スペクトルセンシングに最適化する。
その結果,本手法はローカライズ性能が向上し,2次元同値よりも高速であることがわかった。
論文 参考訳(メタデータ) (2023-02-20T09:35:13Z) - DensePose From WiFi [86.61881052177228]
WiFi信号の位相と振幅を24のヒト領域内の紫外線座標にマッピングするディープニューラルネットワークを開発した。
本モデルでは,複数の被験者の密集したポーズを,画像に基づくアプローチと同等の性能で推定することができる。
論文 参考訳(メタデータ) (2022-12-31T16:48:43Z) - WiFi-based Spatiotemporal Human Action Perception [53.41825941088989]
SNN(End-to-end WiFi signal Neural Network)は、Wi-Fiのみのセンシングを可能にするために提案されている。
特に、3D畳み込みモジュールはWiFi信号の時間的連続性を探索することができ、特徴自己保持モジュールは支配的な特徴を明示的に維持することができる。
論文 参考訳(メタデータ) (2022-06-20T16:03:45Z) - Hands-on Wireless Sensing with Wi-Fi: A Tutorial [7.8774878397748065]
このチュートリアルでは、Wi-Fiセンシングを例に挙げる。
データ収集、信号処理、特徴抽出、モデル設計の理論的原則とコード実装の両方を導入している。
論文 参考訳(メタデータ) (2022-06-20T01:53:35Z) - GraSens: A Gabor Residual Anti-aliasing Sensing Framework for Action
Recognition using WiFi [52.530330427538885]
WiFiベースのヒューマンアクション認識(HAR)は、スマートリビングやリモート監視といったアプリケーションにおいて、有望なソリューションと見なされている。
本稿では,無線機器からのWiFi信号を用いた動作を,多様なシナリオで直接認識する,エンド・ツー・エンドのGabor残差検知ネットワーク(GraSens)を提案する。
論文 参考訳(メタデータ) (2022-05-24T10:20:16Z) - ChaRRNets: Channel Robust Representation Networks for RF Fingerprinting [0.0]
RFフィンガープリントのための複雑値畳み込みニューラルネットワーク(CNN)を提案する。
我々は,深層学習(dl)技術を用いた無線iotデバイスの指紋認証の問題に注目する。
論文 参考訳(メタデータ) (2021-05-08T03:03:21Z) - Moving Object Classification with a Sub-6 GHz Massive MIMO Array using
Real Data [64.48836187884325]
無線信号を用いた屋内環境における各種活動の分類は,様々な応用の新たな技術である。
本論文では,屋内環境におけるマルチインプット・マルチアウトプット(MIMO)システムから,機械学習を用いて移動物体の分類を解析する。
論文 参考訳(メタデータ) (2021-02-09T15:48:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。