Data Driven Deep Learning for Correcting Global Climate Model Projections of SST and DSL in the Bay of Bengal
- URL: http://arxiv.org/abs/2504.20620v1
- Date: Tue, 29 Apr 2025 10:40:37 GMT
- Title: Data Driven Deep Learning for Correcting Global Climate Model Projections of SST and DSL in the Bay of Bengal
- Authors: Abhishek Pasula, Deepak N. Subramani,
- Abstract summary: We introduce a new data-driven deep learning model to correct for this bias.<n>The deep neural model for each variable is trained using pairs of climatology-removed monthly climate projections as input and the corresponding month's ORAS5 as output.<n>Compared to the conventional EquiDistant Cumulative Distribution Function (EDCDF) statistical method for bias correction, our approach decreases RMSE by 0.15C for SST and 0.3 m for DSL.
- Score: 0.4972323953932129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate change alters ocean conditions, notably temperature and sea level. In the Bay of Bengal, these changes influence monsoon precipitation and marine productivity, critical to the Indian economy. In Phase 6 of the Coupled Model Intercomparison Project (CMIP6), Global Climate Models (GCMs) use different shared socioeconomic pathways (SSPs) to obtain future climate projections. However, significant discrepancies are observed between these models and the reanalysis data in the Bay of Bengal for 2015-2024. Specifically, the root mean square error (RMSE) between the climate model output and the Ocean Reanalysis System (ORAS5) is 1.2C for the sea surface temperature (SST) and 1.1 m for the dynamic sea level (DSL). We introduce a new data-driven deep learning model to correct for this bias. The deep neural model for each variable is trained using pairs of climatology-removed monthly climate projections as input and the corresponding month's ORAS5 as output. This model is trained with historical data (1950 to 2014), validated with future projection data from 2015 to 2020, and tested with future projections from 2021 to 2023. Compared to the conventional EquiDistant Cumulative Distribution Function (EDCDF) statistical method for bias correction in climate models, our approach decreases RMSE by 0.15C for SST and 0.3 m for DSL. The trained model subsequently corrects the projections for 2024-2100. A detailed analysis of the monthly, seasonal, and decadal means and variability is performed to underscore the implications of the novel dynamics uncovered in our corrected projections.
Related papers
- Global Climate Model Bias Correction Using Deep Learning [0.4972323953932129]
Climate change affects ocean temperature, salinity and sea level, impacting monsoons and ocean productivity.<n>Future projections by Global Climate Models are widely used to understand the effects of climate change.<n>However, CMIP models have significant bias compared to reanalysis in the Bay of Bengal for the time period when both projections and reanalysis are available.<n>We develop a suite of data-driven deep learning models for bias correction of climate model projections and apply it to correct SST projections of the Bay of Bengal.
arXiv Detail & Related papers (2025-04-27T07:56:57Z) - DUNE: A Machine Learning Deep UNet++ based Ensemble Approach to Monthly, Seasonal and Annual Climate Forecasting [0.0]
A novel Deep UNet++-based Ensemble (DUNE) neural architecture is introduced.
It produces the first AI-based global monthly, seasonal, or annual mean forecast of 2-meter temperatures (T2m) and sea surface temperatures (SST)
These forecasts outperform persistence, climatology, and multiple linear regression for all domains.
arXiv Detail & Related papers (2024-08-12T16:22:30Z) - Validating Deep Learning Weather Forecast Models on Recent High-Impact Extreme Events [0.1747623282473278]
We compare machine learning weather prediction models and ECMWF's high-resolution forecast system.<n>We find that ML weather prediction models locally achieve similar accuracy to HRES on the record-shattering Pacific Northwest heatwave.<n>We also highlight structural differences in how the errors of HRES and the ML models build up to that event.
arXiv Detail & Related papers (2024-04-26T18:18:25Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Validating Climate Models with Spherical Convolutional Wasserstein
Distance [6.391314424489529]
We introduce the spherical convolutional Wasserstein distance to more comprehensively measure differences between climate models and reanalysis data.
This new similarity measure accounts for spatial variability using convolutional projections and quantifies local differences in the distribution of climate variables.
arXiv Detail & Related papers (2024-01-26T05:35:50Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - A Deep Learning Model for Forecasting Global Monthly Mean Sea Surface
Temperature Anomalies [2.8411302762015844]
We have developed a deep learning time series prediction model (Unet-LSTM) based on more than 70 years (1950-2021) of ECMWF ERA5 monthly mean sea surface temperature and 2-metre air temperature data.
The model accurately predicts sea surface temperatures over a 24 month period with a root mean square error remaining below 0.75$circ$C for all predicted months.
We have also investigated the ability of the model to predict sea surface temperature anomalies in the Nino3.4 region, as well as a number of marine heatwave hot spots over the past decade.
arXiv Detail & Related papers (2022-02-21T03:11:27Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.