LDPoly: Latent Diffusion for Polygonal Road Outline Extraction in Large-Scale Topographic Mapping
- URL: http://arxiv.org/abs/2504.20645v1
- Date: Tue, 29 Apr 2025 11:13:33 GMT
- Title: LDPoly: Latent Diffusion for Polygonal Road Outline Extraction in Large-Scale Topographic Mapping
- Authors: Weiqin Jiao, Hao Cheng, George Vosselman, Claudio Persello,
- Abstract summary: We introduce LDPoly, the first framework for extracting polygonal road outlines from high-resolution aerial images.<n>We evaluate LDPoly on a new benchmark dataset, Map2ImLas, which contains detailed polygonal annotations for various topographic objects in several Dutch regions.
- Score: 5.093758132026397
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Polygonal road outline extraction from high-resolution aerial images is an important task in large-scale topographic mapping, where roads are represented as vectorized polygons, capturing essential geometric features with minimal vertex redundancy. Despite its importance, no existing method has been explicitly designed for this task. While polygonal building outline extraction has been extensively studied, the unique characteristics of roads, such as branching structures and topological connectivity, pose challenges to these methods. To address this gap, we introduce LDPoly, the first dedicated framework for extracting polygonal road outlines from high-resolution aerial images. Our method leverages a novel Dual-Latent Diffusion Model with a Channel-Embedded Fusion Module, enabling the model to simultaneously generate road masks and vertex heatmaps. A tailored polygonization method is then applied to obtain accurate vectorized road polygons with minimal vertex redundancy. We evaluate LDPoly on a new benchmark dataset, Map2ImLas, which contains detailed polygonal annotations for various topographic objects in several Dutch regions. Our experiments include both in-region and cross-region evaluations, with the latter designed to assess the model's generalization performance on unseen regions. Quantitative and qualitative results demonstrate that LDPoly outperforms state-of-the-art polygon extraction methods across various metrics, including pixel-level coverage, vertex efficiency, polygon regularity, and road connectivity. We also design two new metrics to assess polygon simplicity and boundary smoothness. Moreover, this work represents the first application of diffusion models for extracting precise vectorized object outlines without redundant vertices from remote-sensing imagery, paving the way for future advancements in this field.
Related papers
- Polygonizing Roof Segments from High-Resolution Aerial Images Using Yolov8-Based Edge Detection [0.0]
This study presents a novel approach for roof detail extraction and vectorization using remote sensing images.<n>We adapt the YOLOv8 OBB model, originally designed for rotated object detection, to extract roof edges effectively.<n> Experiments conducted on the Melville and Hausdorff datasets highlight the method's effectiveness.
arXiv Detail & Related papers (2025-03-12T09:29:10Z) - DreamPolish: Domain Score Distillation With Progressive Geometry Generation [66.94803919328815]
We introduce DreamPolish, a text-to-3D generation model that excels in producing refined geometry and high-quality textures.
In the geometry construction phase, our approach leverages multiple neural representations to enhance the stability of the synthesis process.
In the texture generation phase, we introduce a novel score distillation objective, namely domain score distillation (DSD), to guide neural representations toward such a domain.
arXiv Detail & Related papers (2024-11-03T15:15:01Z) - PolyFootNet: Extracting Polygonal Building Footprints in Off-Nadir Remote Sensing Images [27.58630526006379]
PolyFootNet is a novel deep-learning framework that directly outputs polygonal building footprints without requiring external post-processing steps.<n>A key contribution of PolyFootNet is introducing the Self Offset Attention mechanism, grounded in Nadaraya-Watson regression, to effectively mitigate the accuracy discrepancy observed between low-rise and high-rise buildings.
arXiv Detail & Related papers (2024-08-16T10:21:13Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - 3D Neural Edge Reconstruction [61.10201396044153]
We introduce EMAP, a new method for learning 3D edge representations with a focus on both lines and curves.
Our method implicitly encodes 3D edge distance and direction in Unsigned Distance Functions (UDF) from multi-view edge maps.
On top of this neural representation, we propose an edge extraction algorithm that robustly abstracts 3D edges from the inferred edge points and their directions.
arXiv Detail & Related papers (2024-05-29T17:23:51Z) - Progressive Evolution from Single-Point to Polygon for Scene Text [79.29097971932529]
We introduce Point2Polygon, which can efficiently transform single-points into compact polygons.
Our method uses a coarse-to-fine process, starting with creating anchor points based on recognition confidence, then vertically and horizontally refining the polygon.
In training detectors with polygons generated by our method, we attained 86% of the accuracy relative to training with ground truth (GT); 3) Additionally, the proposed Point2Polygon can be seamlessly integrated to empower single-point spotters to generate polygons.
arXiv Detail & Related papers (2023-12-21T12:08:27Z) - HiT: Building Mapping with Hierarchical Transformers [43.31497052507252]
We propose a simple and novel building mapping method with Hierarchical Transformers, called HiT.
HiT builds on a two-stage detection architecture by adding a polygon head parallel to classification and bounding box regression heads.
Our method achieves a new state-of-the-art in terms of instance segmentation and polygonal metrics compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-09-18T10:24:25Z) - Towards General-Purpose Representation Learning of Polygonal Geometries [62.34832826705641]
We develop a general-purpose polygon encoding model, which can encode a polygonal geometry into an embedding space.
We conduct experiments on two tasks: 1) shape classification based on MNIST; 2) spatial relation prediction based on two new datasets - DBSR-46K and DBSR-cplx46K.
Our results show that NUFTspec and ResNet1D outperform multiple existing baselines with significant margins.
arXiv Detail & Related papers (2022-09-29T15:59:23Z) - PolyWorld: Polygonal Building Extraction with Graph Neural Networks in
Satellite Images [10.661430927191205]
This paper introduces PolyWorld, a neural network that directly extracts building vertices from an image and connects them correctly to create precise polygons.
PolyWorld significantly outperforms the state-of-the-art in building polygonization.
arXiv Detail & Related papers (2021-11-30T15:23:17Z) - PolyNet: Polynomial Neural Network for 3D Shape Recognition with
PolyShape Representation [51.147664305955495]
3D shape representation and its processing have substantial effects on 3D shape recognition.
We propose a deep neural network-based method (PolyNet) and a specific polygon representation (PolyShape)
Our experiments demonstrate the strength and the advantages of PolyNet on both 3D shape classification and retrieval tasks.
arXiv Detail & Related papers (2021-10-15T06:45:59Z) - Automated LoD-2 Model Reconstruction from Very-HighResolution
Satellite-derived Digital Surface Model and Orthophoto [1.2691047660244335]
We propose a model-driven method that reconstructs LoD-2 building models following a "decomposition-optimization-fitting" paradigm.
Our proposed method has addressed a few technical caveats over existing methods, resulting in practically high-quality results.
arXiv Detail & Related papers (2021-09-08T19:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.