PolyWorld: Polygonal Building Extraction with Graph Neural Networks in
Satellite Images
- URL: http://arxiv.org/abs/2111.15491v1
- Date: Tue, 30 Nov 2021 15:23:17 GMT
- Title: PolyWorld: Polygonal Building Extraction with Graph Neural Networks in
Satellite Images
- Authors: Stefano Zorzi, Shabab Bazrafkan, Stefan Habenschuss, Friedrich
Fraundorfer
- Abstract summary: This paper introduces PolyWorld, a neural network that directly extracts building vertices from an image and connects them correctly to create precise polygons.
PolyWorld significantly outperforms the state-of-the-art in building polygonization.
- Score: 10.661430927191205
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Most state-of-the-art instance segmentation methods produce binary
segmentation masks, however, geographic and cartographic applications typically
require precise vector polygons of extracted objects instead of rasterized
output. This paper introduces PolyWorld, a neural network that directly
extracts building vertices from an image and connects them correctly to create
precise polygons. The model predicts the connection strength between each pair
of vertices using a graph neural network and estimates the assignments by
solving a differentiable optimal transport problem. Moreover, the vertex
positions are optimized by minimizing a combined segmentation and polygonal
angle difference loss. PolyWorld significantly outperforms the state-of-the-art
in building polygonization and achieves not only notable quantitative results,
but also produces visually pleasing building polygons. Code and trained weights
will be soon available on github.
Related papers
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
We present a scheme to directly generate manifold, polygonal meshes of complex connectivity as the output of a neural network.
Our key innovation is to define a continuous latent connectivity space at each mesh, which implies the discrete mesh.
In applications, this approach not only yields high-quality outputs from generative models, but also enables directly learning challenging geometry processing tasks such as mesh repair.
arXiv Detail & Related papers (2024-09-30T17:59:03Z) - Enhancing Polygonal Building Segmentation via Oriented Corners [0.3749861135832072]
This paper introduces a novel deep convolutional neural network named OriCornerNet, which directly extracts delineated building polygons from input images.
Our approach involves a deep model that predicts building footprint masks, corners, and orientation vectors that indicate directions toward adjacent corners.
Performance evaluations conducted on SpaceNet Vegas and CrowdAI-small datasets demonstrate the competitive efficacy of our approach.
arXiv Detail & Related papers (2024-07-17T01:59:06Z) - Progressive Evolution from Single-Point to Polygon for Scene Text [79.29097971932529]
We introduce Point2Polygon, which can efficiently transform single-points into compact polygons.
Our method uses a coarse-to-fine process, starting with creating anchor points based on recognition confidence, then vertically and horizontally refining the polygon.
In training detectors with polygons generated by our method, we attained 86% of the accuracy relative to training with ground truth (GT); 3) Additionally, the proposed Point2Polygon can be seamlessly integrated to empower single-point spotters to generate polygons.
arXiv Detail & Related papers (2023-12-21T12:08:27Z) - HiT: Building Mapping with Hierarchical Transformers [43.31497052507252]
We propose a simple and novel building mapping method with Hierarchical Transformers, called HiT.
HiT builds on a two-stage detection architecture by adding a polygon head parallel to classification and bounding box regression heads.
Our method achieves a new state-of-the-art in terms of instance segmentation and polygonal metrics compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-09-18T10:24:25Z) - SuperpixelGraph: Semi-automatic generation of building footprint through
semantic-sensitive superpixel and neural graph networks [21.523846989009886]
Most urban applications necessitate building footprints in the form of concise vector graphics with sharp boundaries.
This paper introduces a semi-automatic approach for building footprint extraction through semantically-sensitive superpixels and neural graph networks.
arXiv Detail & Related papers (2023-04-12T07:39:20Z) - PolyBuilding: Polygon Transformer for End-to-End Building Extraction [9.196604757138825]
PolyBuilding predicts vector representation of buildings from remote sensing images.
Model learns the relations among them and encodes context information from the image to predict the final set of building polygons.
It also achieves a new state-of-the-art in terms of pixel-level coverage, instance-level precision and recall, and geometry-level properties.
arXiv Detail & Related papers (2022-11-03T04:53:17Z) - Towards General-Purpose Representation Learning of Polygonal Geometries [62.34832826705641]
We develop a general-purpose polygon encoding model, which can encode a polygonal geometry into an embedding space.
We conduct experiments on two tasks: 1) shape classification based on MNIST; 2) spatial relation prediction based on two new datasets - DBSR-46K and DBSR-cplx46K.
Our results show that NUFTspec and ResNet1D outperform multiple existing baselines with significant margins.
arXiv Detail & Related papers (2022-09-29T15:59:23Z) - PolyNet: Polynomial Neural Network for 3D Shape Recognition with
PolyShape Representation [51.147664305955495]
3D shape representation and its processing have substantial effects on 3D shape recognition.
We propose a deep neural network-based method (PolyNet) and a specific polygon representation (PolyShape)
Our experiments demonstrate the strength and the advantages of PolyNet on both 3D shape classification and retrieval tasks.
arXiv Detail & Related papers (2021-10-15T06:45:59Z) - Quantization in Relative Gradient Angle Domain For Building Polygon
Estimation [88.80146152060888]
CNN approaches often generate imprecise building morphologies including noisy edges and round corners.
We propose a module that uses prior knowledge of building corners to create angular and concise building polygons from CNN segmentation outputs.
Experimental results demonstrate that our method refines CNN output from a rounded approximation to a more clear-cut angular shape of the building footprint.
arXiv Detail & Related papers (2020-07-10T21:33:06Z) - Polygonal Building Segmentation by Frame Field Learning [37.86051935654666]
We bridge the gap between deep network output and the format used in downstream tasks by adding a frame field output to a deep segmentation model.
We train a deep neural network that aligns a predicted frame field to ground truth contours.
arXiv Detail & Related papers (2020-04-30T15:21:56Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
We propose a novel deep neural network based method, called PUGeo-Net, to generate uniform dense point clouds.
Thanks to its geometry-centric nature, PUGeo-Net works well for both CAD models with sharp features and scanned models with rich geometric details.
arXiv Detail & Related papers (2020-02-24T14:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.