論文の概要: Image deidentification in the XNAT ecosystem: use cases and solutions
- arxiv url: http://arxiv.org/abs/2504.20657v1
- Date: Tue, 29 Apr 2025 11:33:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.870289
- Title: Image deidentification in the XNAT ecosystem: use cases and solutions
- Title(参考訳): XNATエコシステムにおける画像識別--ユースケースと解決策
- Authors: Alex Michie, Simon J Doran,
- Abstract要約: 本稿では,XNATの設備を用いたDICOMデータの同定ワークフローについて述べる。
私たちは、以前の経験に基づいて、識別が必要かもしれないさまざまなコンテキストをリストアップします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: XNAT is a server-based data management platform widely used in academia for curating large databases of DICOM images for research projects. We describe in detail a deidentification workflow for DICOM data using facilities in XNAT, together with independent tools in the XNAT "ecosystem". We list different contexts in which deidentification might be needed, based on our prior experience. The starting point for participation in the Medical Image De-Identification Benchmark (MIDI-B) challenge was a set of pre-existing local methodologies, which were adapted during the validation phase of the challenge. Our result in the test phase was 97.91\%, considerably lower than our peers, due largely to an arcane technical incompatibility of our methodology with the challenge's Synapse platform, which prevented us receiving feedback during the validation phase. Post-submission, additional discrepancy reports from the organisers and via the MIDI-B Continuous Benchmarking facility, enabled us to improve this score significantly to 99.61\%. An entirely rule-based approach was shown to be capable of removing all name-related information in the test corpus, but exhibited failures in dealing fully with address data. Initial experiments using published machine-learning models to remove addresses were partially successful but showed the models to be "over-aggressive" on other types of free-text data, leading to a slight overall degradation in performance to 99.54\%. Future development will therefore focus on improving address-recognition capabilities, but also on better removal of identifiable data burned into the image pixels. Several technical aspects relating to the "answer key" are still under discussion with the challenge organisers, but we estimate that our percentage of genuine deidentification failures on the MIDI-B test corpus currently stands at 0.19\%. (Abridged from original for arXiv submission)
- Abstract(参考訳): XNATは、研究プロジェクトのための大規模なDICOMイメージのデータベースのキュレーションに広く使用されるサーバーベースのデータ管理プラットフォームである。
本稿では,XNATの設備を用いたDICOMデータの特定ワークフローと,XNATの「エコシステム」の独立したツールについて詳述する。
私たちは、以前の経験に基づいて、識別が必要かもしれないさまざまなコンテキストをリストアップします。
医療画像認識ベンチマーク(MIDI-B)課題への参加の出発点は,課題の検証段階に適応した,既存の地域方法論のセットであった。
テストフェーズの結果は97.91\%であり,提案手法と課題のSynapseプラットフォームとの互換性が極めて低いため,検証フェーズ中にフィードバックを受けられなかった。
MIDI-Bの継続的ベンチマーク機能を通じて,提案手法を99.61\%に向上させることができた。
完全にルールベースのアプローチでは、テストコーパス内のすべての名前関連情報を削除できるが、アドレスデータを完全に扱えないことが示されている。
公表された機械学習モデルを用いてアドレスを削除する実験は部分的に成功したが、他の種類の自由テキストデータでは「過剰に攻撃的」であることが示され、性能はわずかに99.54\%に低下した。
今後の開発は、アドレス認識機能の改善だけでなく、画像ピクセルに焼き込まれた識別可能なデータの除去の改善にも焦点が当てられる。
回答キー」に関するいくつかの技術的側面は、まだ課題オーガナイザとの議論が続いているが、MIDI-Bテストコーパスにおける真正の判定失敗の割合は、現在0.19 %と見積もられている。
(原本からarXivへの提出)
関連論文リスト
- Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
弱点アノテーションを用いたドメイン適応型シナプス検出のためのフレームワークであるAdaSynを提案する。
I SBI 2023のWASPSYNチャレンジでは、我々の手法が第1位にランクインした。
論文 参考訳(メタデータ) (2023-08-31T05:05:53Z) - The Second-place Solution for CVPR VISION 23 Challenge Track 1 -- Data
Effificient Defect Detection [3.4853769431047907]
データ有効欠陥検出のためのビジョンチャレンジトラック1は、競合相手がデータ不足の環境で14の産業検査データセットを例示する必要がある。
この課題に対して、Aoi-overfiting-Teamチームの技術詳細を紹介します。
論文 参考訳(メタデータ) (2023-06-25T03:37:02Z) - Generalizable Metric Network for Cross-domain Person Re-identification [55.71632958027289]
クロスドメイン(ドメインの一般化)シーンは、Re-IDタスクにおいて課題となる。
既存のほとんどのメソッドは、すべてのドメインのドメイン不変またはロバストな機能を学ぶことを目的としています。
本稿では,サンプルペア空間における標本類似性を調べるために,GMN(Generalizable Metric Network)を提案する。
論文 参考訳(メタデータ) (2023-06-21T03:05:25Z) - Neural Relation Graph: A Unified Framework for Identifying Label Noise
and Outlier Data [44.64190826937705]
本稿では,データのリレーショナルグラフ構造に基づいてラベルエラーや外れ値データを検出するスケーラブルなアルゴリズムを提案する。
また,特徴埋め込み空間におけるデータポイントのコンテキスト情報を提供する可視化ツールも導入した。
提案手法は,検討対象のタスクすべてに対して最先端検出性能を達成し,大規模実世界のデータセットでその有効性を実証する。
論文 参考訳(メタデータ) (2023-01-29T02:09:13Z) - 1st Place Solution of The Robust Vision Challenge (RVC) 2022 Semantic
Segmentation Track [67.56316745239629]
本報告では,ECCV 2022におけるロバストビジョンチャレンジのセマンティックセグメンテーション課題に対する勝利解について述べる。
本手法では,エンコーダとしてFAN-B-Hybridモデルを採用し,セグメンテーションフレームワークとしてSegformerを使用している。
提案手法は,マルチドメインセグメンテーションタスクの強力なベースラインとして機能し,今後の作業に役立てることができる。
論文 参考訳(メタデータ) (2022-10-23T20:52:22Z) - NetRCA: An Effective Network Fault Cause Localization Algorithm [22.88986905436378]
ネットワーク障害の根本原因の特定は、ネットワークの運用と保守に不可欠である。
この問題に対処するために,NetRCAという新しいアルゴリズムを提案する。
ICASSP 2022 AIOps Challengeの実際のデータセットで実験と分析が行われる。
論文 参考訳(メタデータ) (2022-02-23T02:03:35Z) - Reliable Shot Identification for Complex Event Detection via
Visual-Semantic Embedding [72.9370352430965]
本稿では,映像中の事象検出のための視覚的意味的誘導損失法を提案する。
カリキュラム学習に動機付け,高い信頼性の事例で分類器の訓練を開始するために,負の弾性正規化項を導入する。
提案する非ネット正規化問題の解法として,代替最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-12T11:46:56Z) - Video-based Person Re-identification without Bells and Whistles [49.51670583977911]
ビデオベースの人物再識別(Re-ID)は、異なるカメラの下で歩行者を特定するために、ビデオトラッカーとトリミングされたビデオフレームをマッチングすることを目的としている。
従来の方法による不完全な検出と追跡の結果から, 収穫したトラックレットの空間的, 時間的不整合が生じている。
本稿では,深層学習に基づくトラックレットの検出と追跡を適用することで,これらの予期せぬノイズを効果的に低減できる簡易な再検出リンク(DL)モジュールを提案する。
論文 参考訳(メタデータ) (2021-05-22T10:17:38Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。