Partitioned Memory Storage Inspired Few-Shot Class-Incremental learning
- URL: http://arxiv.org/abs/2504.20797v1
- Date: Tue, 29 Apr 2025 14:11:06 GMT
- Title: Partitioned Memory Storage Inspired Few-Shot Class-Incremental learning
- Authors: Renye Zhang, Yimin Yin, Jinghua Zhang,
- Abstract summary: Few-Shot Class-Incremental Learning (FSCIL) focuses on continuous learning of new categories with limited samples without forgetting old knowledge.<n>Our paper develops a method that learns independent models for each session. It can inherently prevent catastrophic forgetting.<n>Our method provides a fresh viewpoint for FSCIL and demonstrates the state-of-the-art performance on CIFAR-100 and mini-ImageNet datasets.
- Score: 2.9845592719739127
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current mainstream deep learning techniques exhibit an over-reliance on extensive training data and a lack of adaptability to the dynamic world, marking a considerable disparity from human intelligence. To bridge this gap, Few-Shot Class-Incremental Learning (FSCIL) has emerged, focusing on continuous learning of new categories with limited samples without forgetting old knowledge. Existing FSCIL studies typically use a single model to learn knowledge across all sessions, inevitably leading to the stability-plasticity dilemma. Unlike machines, humans store varied knowledge in different cerebral cortices. Inspired by this characteristic, our paper aims to develop a method that learns independent models for each session. It can inherently prevent catastrophic forgetting. During the testing stage, our method integrates Uncertainty Quantification (UQ) for model deployment. Our method provides a fresh viewpoint for FSCIL and demonstrates the state-of-the-art performance on CIFAR-100 and mini-ImageNet datasets.
Related papers
- Disentangled World Models: Learning to Transfer Semantic Knowledge from Distracting Videos for Reinforcement Learning [93.58897637077001]
This paper tries to learn and understand underlying semantic variations from distracting videos via offline-to-online latent distillation and flexible disentanglement constraints.<n>We pretrain the action-free video prediction model offline with disentanglement regularization to extract semantic knowledge from distracting videos.<n>For finetuning in the online environment, we exploit the knowledge from the pretrained model and introduce a disentanglement constraint to the world model.
arXiv Detail & Related papers (2025-03-11T13:50:22Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
Continual Learning aims to overcome the catastrophic forgetting of former knowledge when learning new ones.
This paper presents a comprehensive survey of the latest advancements in PTM-based CL.
arXiv Detail & Related papers (2024-01-29T18:27:52Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Overcoming Generic Knowledge Loss with Selective Parameter Update [48.240683797965005]
We propose a novel approach to continuously update foundation models.
Instead of updating all parameters equally, we localize the updates to a sparse set of parameters relevant to the task being learned.
Our method achieves improvements on the accuracy of the newly learned tasks up to 7% while preserving the pretraining knowledge with a negligible decrease of 0.9% on a representative control set accuracy.
arXiv Detail & Related papers (2023-08-23T22:55:45Z) - SRIL: Selective Regularization for Class-Incremental Learning [5.810252620242912]
Class-Incremental Learning aims to create an integrated model that balances plasticity and stability to overcome this challenge.
We propose a selective regularization method that accepts new knowledge while maintaining previous knowledge.
We validate the effectiveness of the proposed method through extensive experimental protocols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.
arXiv Detail & Related papers (2023-05-09T05:04:35Z) - New Insights on Relieving Task-Recency Bias for Online Class Incremental
Learning [37.888061221999294]
In all settings, the online class incremental learning (OCIL) is more challenging and can be encountered more frequently in real world.
To strike a preferable trade-off between stability and plasticity, we propose an Adaptive Focus Shifting algorithm.
arXiv Detail & Related papers (2023-02-16T11:52:00Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
Deep neural networks suffer from catastrophic forgetting when learning new categories.
We propose a novel two-stage learning paradigm FOSTER, empowering the model to learn new categories adaptively.
arXiv Detail & Related papers (2022-04-10T11:38:33Z) - Enabling Continual Learning with Differentiable Hebbian Plasticity [18.12749708143404]
Continual learning is the problem of sequentially learning new tasks or knowledge while protecting previously acquired knowledge.
catastrophic forgetting poses a grand challenge for neural networks performing such learning process.
We propose a Differentiable Hebbian Consolidation model which is composed of a Differentiable Hebbian Plasticity.
arXiv Detail & Related papers (2020-06-30T06:42:19Z) - Few-Shot Class-Incremental Learning [68.75462849428196]
We focus on a challenging but practical few-shot class-incremental learning (FSCIL) problem.
FSCIL requires CNN models to incrementally learn new classes from very few labelled samples, without forgetting the previously learned ones.
We represent the knowledge using a neural gas (NG) network, which can learn and preserve the topology of the feature manifold formed by different classes.
arXiv Detail & Related papers (2020-04-23T03:38:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.