論文の概要: The When and How of Target Variable Transformations
- arxiv url: http://arxiv.org/abs/2504.20821v1
- Date: Tue, 29 Apr 2025 14:40:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.938176
- Title: The When and How of Target Variable Transformations
- Title(参考訳): 可変変換の時間と方法
- Authors: Loren Nuyts, Jesse Davis,
- Abstract要約: 対象変数の変換が適切なモデルを学ぶことができるかどうかに大きな影響を与えることを示す。
対象変数の変換が必要な場合の状況を示す、sam'の一般的なルールセットを提供する。
- 参考スコア(独自算出の注目度): 12.45382990313556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The machine learning pipeline typically involves the iterative process of (1) collecting the data, (2) preparing the data, (3) learning a model, and (4) evaluating a model. Practitioners recognize the importance of the data preparation phase in terms of its impact on the ability to learn accurate models. In this regard, significant attention is often paid to manipulating the feature set (e.g., selection, transformations, dimensionality reduction). A point that is less well appreciated is that transformations on the target variable can also have a large impact on whether it is possible to learn a suitable model. These transformations may include accounting for subject-specific biases (e.g., in how someone uses a rating scale), contexts (e.g., population size effects), and general trends (e.g., inflation). However, this point has received a much more cursory treatment in the existing literature. The goal of this paper is three-fold. First, we aim to highlight the importance of this problem by showing when transforming the target variable has been useful in practice. Second, we will provide a set of generic ``rules of thumb'' that indicate situations when transforming the target variable may be needed. Third, we will discuss which transformations should be considered in a given situation.
- Abstract(参考訳): 機械学習パイプラインは通常、(1)データ収集、(2)データ準備、(3)モデル学習、(4)モデル評価の反復プロセスを含む。
実践者は、正確なモデルを学習する能力に対する影響の観点から、データ準備フェーズの重要性を認識します。
この点において、しばしば特徴集合(例えば、選択、変換、次元減少)を操作するために重要な注意が払われる。
あまり高く評価されていない点は、対象変数の変換が適切なモデルを学ぶことができるかどうかに大きな影響を与える可能性がある点である。
これらの変換には、対象固有のバイアス(例えば、誰かが評価尺度を使用する方法)、コンテキスト(例えば、人口規模の影響)、一般的なトレンド(例えば、インフレーション)の説明が含まれる。
しかし、既存の文献では、この点がずっと格安な扱いを受けている。
本論文の目標は3倍である。
まず,対象変数の変換が実際に有用であることを示すことによって,この問題の重要性を強調することを目的とする。
次に、ターゲット変数の変換が必要な場合の状況を示す、ジェネリックな ` ``rules of thumb'' のセットを提供する。
第三に、特定の状況においてどの変換を考慮するべきかについて議論する。
関連論文リスト
- Stanceformer: Target-Aware Transformer for Stance Detection [59.69858080492586]
スタンス検出は、テキストで表現されたスタンスを特定の主題やターゲットに向けて識別する。
以前の作業は、ターゲットを効果的に優先順位付けする能力に欠ける既存のトランスフォーマーモデルに依存していた。
本稿では,学習と推論の両方において,目標に対する注意を高めるターゲット対応トランスフォーマーモデルであるStanceformerを紹介する。
論文 参考訳(メタデータ) (2024-10-09T17:24:28Z) - Time-Varying Propensity Score to Bridge the Gap between the Past and Present [104.46387765330142]
本稿では,データ分布の段階的変化を検出するための時間変化確率スコアを提案する。
実装のさまざまな方法を示し、さまざまな問題について評価する。
論文 参考訳(メタデータ) (2022-10-04T07:21:49Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - A Systematic Evaluation of Domain Adaptation in Facial Expression
Recognition [0.0]
本稿では,表情認識における領域適応の体系的評価について述べる。
我々は、最先端のトランスファー学習技術と、6つの一般的な顔表情データセットを使用する。
その結果,移動学習の精度は高くなく,目的のデータセットと慣用的に異なることがわかった。
論文 参考訳(メタデータ) (2021-06-29T14:41:19Z) - CADDA: Class-wise Automatic Differentiable Data Augmentation for EEG
Signals [92.60744099084157]
本研究では、勾配に基づく学習に適した微分可能データ拡張を提案する。
本研究は,臨床関連睡眠ステージ分類課題におけるアプローチの意義を示す。
論文 参考訳(メタデータ) (2021-06-25T15:28:48Z) - Grounding inductive biases in natural images:invariance stems from
variations in data [20.432568247732206]
本研究では,実際のデータセットであるImageNetの変動要因について検討する。
標準的な拡張は、翻訳とスケールの正確な組み合わせに依存していることを示す。
ImageNetの変動の主な要因は外見に大きく関係していることがわかりました。
論文 参考訳(メタデータ) (2021-06-09T14:58:57Z) - Rotating spiders and reflecting dogs: a class conditional approach to
learning data augmentation distributions [0.0]
拡張変換のクラス条件分布を学習する手法を提案する。
メソッドがクラスによって異なる意味のない変換を学習する例をいくつか挙げる。
本手法は,潜在的に複雑なデータセットに固有の対称性を探索するためのツールとして利用できる。
論文 参考訳(メタデータ) (2021-06-07T23:36:24Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
本研究では,ソースフリードメイン適応(SFDA)の課題について検討する。
我々は、FDAの一般化モデルを学ぶためのTransformer(TransDA)という、汎用的で効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-28T23:06:26Z) - Value-driven Hindsight Modelling [68.658900923595]
値推定は強化学習(RL)パラダイムの重要な構成要素である。
モデル学習は、観測系列に存在する豊富な遷移構造を利用することができるが、このアプローチは通常、報酬関数に敏感ではない。
この2つの極点の間に位置するRLにおける表現学習のアプローチを開発する。
これにより、タスクに直接関連し、値関数の学習を加速できる、抽出可能な予測ターゲットが提供される。
論文 参考訳(メタデータ) (2020-02-19T18:10:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。