Does Feedback Help in Bandits with Arm Erasures?
- URL: http://arxiv.org/abs/2504.20894v1
- Date: Tue, 29 Apr 2025 16:10:05 GMT
- Title: Does Feedback Help in Bandits with Arm Erasures?
- Authors: Merve Karakas, Osama Hanna, Lin F. Yang, Christina Fragouli,
- Abstract summary: We study a distributed multi-armed bandit (MAB) problem over arm erasure channels.<n>In this paper, we consider the case where the agent can send feedback to the learner on whether the arm request was received.<n>Surprisingly, we prove that erasure feedback does not improve the worst-case regret upper bound order over the previously studied no-feedback setting.
- Score: 20.235500642661812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study a distributed multi-armed bandit (MAB) problem over arm erasure channels, motivated by the increasing adoption of MAB algorithms over communication-constrained networks. In this setup, the learner communicates the chosen arm to play to an agent over an erasure channel with probability $\epsilon \in [0,1)$; if an erasure occurs, the agent continues pulling the last successfully received arm; the learner always observes the reward of the arm pulled. In past work, we considered the case where the agent cannot convey feedback to the learner, and thus the learner does not know whether the arm played is the requested or the last successfully received one. In this paper, we instead consider the case where the agent can send feedback to the learner on whether the arm request was received, and thus the learner exactly knows which arm was played. Surprisingly, we prove that erasure feedback does not improve the worst-case regret upper bound order over the previously studied no-feedback setting. In particular, we prove a regret lower bound of $\Omega(\sqrt{KT} + K / (1 - \epsilon))$, where $K$ is the number of arms and $T$ the time horizon, that matches no-feedback upper bounds up to logarithmic factors. We note however that the availability of feedback enables simpler algorithm designs that may achieve better constants (albeit not better order) regret bounds; we design one such algorithm and evaluate its performance numerically.
Related papers
- A General Framework for Clustering and Distribution Matching with Bandit Feedback [81.50716021326194]
We develop a general framework for clustering and distribution matching problems with bandit feedback.<n>We derive a non-asymptotic lower bound on the average number of arm pulls for any online algorithm with an error probability not exceeding $delta$.<n>Our refined analysis uncovers a novel bound on the speed at which the average number of arm pulls of our algorithm converges to the fundamental limit as $delta$ vanishes.
arXiv Detail & Related papers (2024-09-08T12:19:12Z) - Learning for Bandits under Action Erasures [20.235500642661812]
We consider a novel multi-arm bandit (MAB) setup, where a learner needs to communicate the actions to distributed agents over erasure channels.
In our model, while the distributed agents know if an action is erased, the central learner does not.
We propose a scheme that can work on top of any (existing or future) MAB algorithm and make it robust to action erasures.
arXiv Detail & Related papers (2024-06-26T05:03:00Z) - Multi-Armed Bandits with Abstention [62.749500564313834]
We introduce a novel extension of the canonical multi-armed bandit problem that incorporates an additional strategic element: abstention.
In this enhanced framework, the agent is not only tasked with selecting an arm at each time step, but also has the option to abstain from accepting the instantaneous reward before observing it.
arXiv Detail & Related papers (2024-02-23T06:27:12Z) - Adversarial Bandits with Multi-User Delayed Feedback: Theory and
Application [17.64363983613468]
We formulate an adversarial MAB problem with multi-user delayed feedback and design a modified EXP3 algorithm MUD-EXP3.
In this paper, we consider that the delayed feedback results are from multiple users and are unrestricted on internal distribution.
arXiv Detail & Related papers (2023-10-17T12:08:15Z) - Combinatorial Bandits for Maximum Value Reward Function under Max
Value-Index Feedback [9.771002043127728]
We consider a multi-armed bandit problem for maximum value reward function under maximum value and index feedback.
We propose an algorithm and provide a regret bound for problem instances with arm outcomes according to arbitrary distributions with finite supports.
Our algorithm achieves a $O((k/Delta)log(T))$ distribution-dependent and a $tildeO(sqrtT)$ distribution-independent regret.
arXiv Detail & Related papers (2023-05-25T14:02:12Z) - Best Arm Identification in Restless Markov Multi-Armed Bandits [85.55466536537293]
We study the problem of identifying the best arm in a multi-armed bandit environment.
A decision entity wishes to find the index of the best arm as quickly as possible, subject to an upper bound error probability.
We show that this policy achieves an upper bound that depends on $R$ and is monotonically non-increasing as $Rtoinfty$.
arXiv Detail & Related papers (2022-03-29T04:58:04Z) - Multi-armed Bandit Algorithm against Strategic Replication [5.235979896921492]
We consider a multi-armed bandit problem in which a set of arms is registered by each agent, and the agent receives reward when its arm is selected.
An agent might strategically submit more arms with replications, which can bring more reward by abusing the bandit algorithm's exploration-exploitation balance.
We propose a bandit algorithm which demotivates replications and also achieves a small cumulative regret.
arXiv Detail & Related papers (2021-10-23T07:38:44Z) - Combinatorial Bandits without Total Order for Arms [52.93972547896022]
We present a reward model that captures set-dependent reward distribution and assumes no total order for arms.
We develop a novel regret analysis and show an $Oleft(frack2 n log Tepsilonright)$ gap-dependent regret bound as well as an $Oleft(k2sqrtn T log Tright)$ gap-independent regret bound.
arXiv Detail & Related papers (2021-03-03T23:08:59Z) - Online Model Selection: a Rested Bandit Formulation [49.69377391589057]
We introduce and analyze a best arm identification problem in the rested bandit setting.
We define a novel notion of regret for this problem, where we compare to the policy that always plays the arm having the smallest expected loss at the end of the game.
Unlike known model selection efforts in the recent bandit literature, our algorithm exploits the specific structure of the problem to learn the unknown parameters of the expected loss function.
arXiv Detail & Related papers (2020-12-07T08:23:08Z) - Lenient Regret for Multi-Armed Bandits [72.56064196252498]
We consider the Multi-Armed Bandit (MAB) problem, where an agent sequentially chooses actions and observes rewards for the actions it took.
While the majority of algorithms try to minimize the regret, i.e., the cumulative difference between the reward of the best action and the agent's action, this criterion might lead to undesirable results.
We suggest a new, more lenient, regret criterion that ignores suboptimality gaps smaller than some $epsilon$.
arXiv Detail & Related papers (2020-08-10T08:30:52Z) - Blocking Bandits [33.14975454724348]
We consider a novel multi-armed bandit setting, where playing an arm makes it unavailable for a fixed number of time slots thereafter.
We show that with prior knowledge of the rewards and delays of all the arms, the problem of optimizing cumulative reward does not admit any pseudo-polynomial time algorithm.
We design a UCB based algorithm which is shown to have $c log T + o(log T)$ cumulative regret against the greedy algorithm.
arXiv Detail & Related papers (2019-07-27T20:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.