Learning for Bandits under Action Erasures
- URL: http://arxiv.org/abs/2406.18072v1
- Date: Wed, 26 Jun 2024 05:03:00 GMT
- Title: Learning for Bandits under Action Erasures
- Authors: Osama Hanna, Merve Karakas, Lin F. Yang, Christina Fragouli,
- Abstract summary: We consider a novel multi-arm bandit (MAB) setup, where a learner needs to communicate the actions to distributed agents over erasure channels.
In our model, while the distributed agents know if an action is erased, the central learner does not.
We propose a scheme that can work on top of any (existing or future) MAB algorithm and make it robust to action erasures.
- Score: 20.235500642661812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a novel multi-arm bandit (MAB) setup, where a learner needs to communicate the actions to distributed agents over erasure channels, while the rewards for the actions are directly available to the learner through external sensors. In our model, while the distributed agents know if an action is erased, the central learner does not (there is no feedback), and thus does not know whether the observed reward resulted from the desired action or not. We propose a scheme that can work on top of any (existing or future) MAB algorithm and make it robust to action erasures. Our scheme results in a worst-case regret over action-erasure channels that is at most a factor of $O(1/\sqrt{1-\epsilon})$ away from the no-erasure worst-case regret of the underlying MAB algorithm, where $\epsilon$ is the erasure probability. We also propose a modification of the successive arm elimination algorithm and prove that its worst-case regret is $\Tilde{O}(\sqrt{KT}+K/(1-\epsilon))$, which we prove is optimal by providing a matching lower bound.
Related papers
- Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback [58.66941279460248]
Learning from human feedback plays an important role in aligning generative models, such as large language models (LLM)
We study a model within this problem domain--contextual dueling bandits with adversarial feedback, where the true preference label can be flipped by an adversary.
We propose an algorithm namely robust contextual dueling bandit (algo), which is based on uncertainty-weighted maximum likelihood estimation.
arXiv Detail & Related papers (2024-04-16T17:59:55Z) - Weighted Tallying Bandits: Overcoming Intractability via Repeated
Exposure Optimality [46.445321251991096]
In recommender system or crowdsourcing applications, a human's preferences or abilities are often a function of the algorithm's recent actions.
We introduce the Weighted Tallying Bandit (WTB), which generalizes this setting by requiring that an action's loss is a function of a emph summation of the number of times that arm was played in the last $m$ timesteps.
We show that for problems with $K$ actions and horizon $T$, a simple modification of the successive elimination algorithm has $O left( sqrtKT +m+
arXiv Detail & Related papers (2023-05-04T15:59:43Z) - Communication-Constrained Bandits under Additive Gaussian Noise [111.06688156723018]
We study a distributed multi-armed bandit where a client supplies the learner with communication-constrained feedback.
We propose a multi-phase bandit algorithm, $mathttUEtext-UCB++$, which matches this lower bound to a minor additive factor.
arXiv Detail & Related papers (2023-04-25T09:31:20Z) - Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR [58.40575099910538]
We study risk-sensitive Reinforcement Learning (RL), focusing on the objective of Conditional Value at Risk (CVaR) with risk tolerance $tau$.
We show the minimax CVaR regret rate is $Omega(sqrttau-1AK)$, where $A$ is the number of actions and $K$ is the number of episodes.
We show that our algorithm achieves the optimal regret of $widetilde O(tau-1sqrtSAK)$ under a continuity assumption and in general attains a near
arXiv Detail & Related papers (2023-02-07T02:22:31Z) - Multi-armed Bandit Algorithm against Strategic Replication [5.235979896921492]
We consider a multi-armed bandit problem in which a set of arms is registered by each agent, and the agent receives reward when its arm is selected.
An agent might strategically submit more arms with replications, which can bring more reward by abusing the bandit algorithm's exploration-exploitation balance.
We propose a bandit algorithm which demotivates replications and also achieves a small cumulative regret.
arXiv Detail & Related papers (2021-10-23T07:38:44Z) - Scale Free Adversarial Multi Armed Bandits [13.757095663704858]
We consider the Scale-Free Adversarial Multi Armed Bandit(MAB) problem.
We design a Follow The Regularized Leader(FTRL) algorithm, which comes with the first scale-free regret guarantee for MAB.
We also develop a new technique for obtaining local-norm lower bounds for Bregman Divergences.
arXiv Detail & Related papers (2021-06-08T21:26:57Z) - Lenient Regret for Multi-Armed Bandits [72.56064196252498]
We consider the Multi-Armed Bandit (MAB) problem, where an agent sequentially chooses actions and observes rewards for the actions it took.
While the majority of algorithms try to minimize the regret, i.e., the cumulative difference between the reward of the best action and the agent's action, this criterion might lead to undesirable results.
We suggest a new, more lenient, regret criterion that ignores suboptimality gaps smaller than some $epsilon$.
arXiv Detail & Related papers (2020-08-10T08:30:52Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
We study a constrained contextual linear bandit setting, where the goal of the agent is to produce a sequence of policies.
We propose an upper-confidence bound algorithm for this problem, called optimistic pessimistic linear bandit (OPLB)
arXiv Detail & Related papers (2020-06-17T22:32:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.