Statistical and Predictive Analysis to Identify Risk Factors and Effects of Post COVID-19 Syndrome
- URL: http://arxiv.org/abs/2504.20915v1
- Date: Tue, 29 Apr 2025 16:34:06 GMT
- Title: Statistical and Predictive Analysis to Identify Risk Factors and Effects of Post COVID-19 Syndrome
- Authors: Milad Leyli-abadi, Jean-Patrick Brunet, Axel Tahmasebimoradi,
- Abstract summary: COVID-19 symptoms can persist for months after infection, leading to what is termed long COVID.<n> Factors such as vaccination timing, patient characteristics, and symptoms during the acute phase of infection may contribute to the prolonged effects and intensity of long COVID.<n>We benchmark and interpret various data-driven approaches, including linear models, random forests, gradient boosting, and neural networks, using data from the Lifelines COVID-19 cohort.<n>Our results show that Neural Networks (NN) achieve the best performance in terms of MAPE, with predictions averaging 19% error.
- Score: 1.33134751838052
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on recent studies, some COVID-19 symptoms can persist for months after infection, leading to what is termed long COVID. Factors such as vaccination timing, patient characteristics, and symptoms during the acute phase of infection may contribute to the prolonged effects and intensity of long COVID. Each patient, based on their unique combination of factors, develops a specific risk or intensity of long COVID. In this work, we aim to achieve two objectives: (1) conduct a statistical analysis to identify relationships between various factors and long COVID, and (2) perform predictive analysis of long COVID intensity using these factors. We benchmark and interpret various data-driven approaches, including linear models, random forests, gradient boosting, and neural networks, using data from the Lifelines COVID-19 cohort. Our results show that Neural Networks (NN) achieve the best performance in terms of MAPE, with predictions averaging 19\% error. Additionally, interpretability analysis reveals key factors such as loss of smell, headache, muscle pain, and vaccination timing as significant predictors, while chronic disease and gender are critical risk factors. These insights provide valuable guidance for understanding long COVID and developing targeted interventions.
Related papers
- Deep Neural Networks for Predicting Recurrence and Survival in Patients with Esophageal Cancer After Surgery [0.0]
Esophageal cancer is a major cause of cancer-related mortality internationally.
We assessed prognostic factor identification and discriminative performances of three models for Disease-Free Survival (DFS) and Overall Survival (OS)
DeepSurv and DeepHit demonstrated comparable discriminative accuracy to CoxPH.
arXiv Detail & Related papers (2024-08-30T16:20:47Z) - Multi-level Phenotypic Models of Cardiovascular Disease and Obstructive Sleep Apnea Comorbidities: A Longitudinal Wisconsin Sleep Cohort Study [5.129044301709751]
Cardiovascular diseases (CVDs) are notably prevalent among patients with obstructive sleep apnea (OSA)
Traditional models typically lack the necessary dynamic and longitudinal scope to accurately forecast CVD trajectories in OSA patients.
This study introduces a novel multi-level phenotypic model to analyze the progression and interplay of these conditions over time, utilizing data from the Wisconsin Sleep Cohort.
arXiv Detail & Related papers (2024-06-19T04:50:16Z) - Predicting Long-term Renal Impairment in Post-COVID-19 Patients with
Machine Learning Algorithms [0.0]
The COVID-19 pandemic has had far-reaching implications for global public health.
renal impairment has garnered particular attention due to its potential long-term health impacts.
This study endeavors to predict the risk of long-term renal impairment using advanced machine learning algorithms.
arXiv Detail & Related papers (2023-09-28T14:44:06Z) - Contrastive Learning of Temporal Distinctiveness for Survival Analysis
in Electronic Health Records [10.192973297290136]
We propose a novel Ontology-aware Temporality-based Contrastive Survival (OTCSurv) analysis framework.
OTCSurv uses survival durations from both censored and observed data to define temporal distinctiveness.
We conduct experiments using a large EHR dataset to forecast the risk of hospitalized patients who are in danger of developing acute kidney injury (AKI)
arXiv Detail & Related papers (2023-08-24T22:36:22Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
We introduce the Disentangled Counterfactual Recurrent Network (DCRN), a sequence-to-sequence architecture that estimates treatment outcomes over time.
With an architecture that is completely inspired by the causal structure of treatment influence over time, we advance forecast accuracy and disease understanding.
We demonstrate that DCRN outperforms current state-of-the-art methods in forecasting treatment responses, on both real and simulated data.
arXiv Detail & Related papers (2021-12-07T16:40:28Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Predicting Patient COVID-19 Disease Severity by means of Statistical and
Machine Learning Analysis of Blood Cell Transcriptome Data [3.5699804146136676]
We investigated how such data from the peripheral blood of COVID-19 patients might be used to predict clinical outcomes.
Our work revealed several clinical parameters measurable in blood samples, which discriminated between healthy people and COVID-19 positive patients.
We thus developed a number of analytic methods that showed accuracy and precision for disease severity and mortality outcome predictions that were above 90%.
arXiv Detail & Related papers (2020-11-19T10:32:46Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.