論文の概要: Kill two birds with one stone: generalized and robust AI-generated text detection via dynamic perturbations
- arxiv url: http://arxiv.org/abs/2504.21019v1
- Date: Tue, 22 Apr 2025 02:21:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-10 02:22:05.46249
- Title: Kill two birds with one stone: generalized and robust AI-generated text detection via dynamic perturbations
- Title(参考訳): 1つの石で2羽の鳥を殺す:動的摂動による一般化と堅牢なAIによるテキスト検出
- Authors: Yinghan Zhou, Juan Wen, Wanli Peng, Yiming Xue, Ziwei Zhang, Zhengxian Wu,
- Abstract要約: 本稿では,高精巧な報酬と行動を伴う強化学習によって導入された動的摂動による新しいAIGT検出法(DP-Net)を提案する。
実験により,提案したDP-NetによるAIGT検出手法は,一般化能力に優れることがわかった。
- 参考スコア(独自算出の注目度): 23.612489763464357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing popularity of large language models has raised concerns regarding the potential to misuse AI-generated text (AIGT). It becomes increasingly critical to establish an excellent AIGT detection method with high generalization and robustness. However, existing methods either focus on model generalization or concentrate on robustness. The unified mechanism, to simultaneously address the challenges of generalization and robustness, is less explored. In this paper, we argue that robustness can be view as a specific form of domain shift, and empirically reveal an intrinsic mechanism for model generalization of AIGT detection task. Then, we proposed a novel AIGT detection method (DP-Net) via dynamic perturbations introduced by a reinforcement learning with elaborated reward and action. Experimentally, extensive results show that the proposed DP-Net significantly outperforms some state-of-the-art AIGT detection methods for generalization capacity in three cross-domain scenarios. Meanwhile, the DP-Net achieves best robustness under two text adversarial attacks. The code is publicly available at https://github.com/CAU-ISS-Lab/AIGT-Detection-Evade-Detection/tree/main/DP-Net.
- Abstract(参考訳): 大規模言語モデルの普及は、AI生成テキスト(AIGT)を誤用する可能性を懸念している。
高度な一般化とロバスト性を備えた優れたAIGT検出手法を確立することがますます重要になっている。
しかし、既存の手法はモデル一般化にフォーカスするか、堅牢性にフォーカスする。
一般化とロバスト性という課題に同時に対処する統一的なメカニズムは研究されていない。
本稿では、ロバスト性はドメインシフトの特定の形態とみなすことができ、AIGT検出タスクのモデル一般化のための本質的なメカニズムを実証的に明らかにする。
そこで我々は,強化学習による動的摂動を用いた新しいAIGT検出法 (DP-Net) を提案する。
実験により,提案するDP-Netは,3つのクロスドメインシナリオにおける一般化能力に対して,最先端のAIGT検出法よりも優れた性能を示した。
一方、DP-Netは2つのテキスト敵攻撃の下で最高の堅牢性を達成する。
コードはhttps://github.com/CAU-ISS-Lab/AIGT-Detection-Evade-Detection/tree/main/DP-Netで公開されている。
関連論文リスト
- Are AI-Generated Text Detectors Robust to Adversarial Perturbations? [9.001160538237372]
AI生成テキスト(AIGT)の現在の検出器は、敵の摂動に対する堅牢性を欠いている。
本稿では,既存のAIGT検出手法の堅牢性について検討し,新しい検出器であるシームズキャリブレーション・リコンストラクション・ネットワーク(SCRN)を導入する。
SCRNは、テキストからのノイズの追加と除去に再構成ネットワークを使用し、局所的な摂動に対して堅牢な意味表現を抽出する。
論文 参考訳(メタデータ) (2024-06-03T10:21:48Z) - Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack [24.954755569786396]
そこで本研究では,機械生成コンテンツの小さな摂動を回避して検出を回避すべく,より広いレベルの敵攻撃のためのフレームワークを提案する。
我々は、ホワイトボックスとブラックボックスの2つの攻撃設定を検討し、現在の検出モデルのロバスト性を高める可能性を評価するために、動的シナリオにおける逆学習を採用する。
実験の結果、現在の検出モデルは10秒で妥協でき、機械が生成したテキストを人間の書き起こしコンテンツとして誤分類する結果となった。
論文 参考訳(メタデータ) (2024-04-02T12:49:22Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Can AI-Generated Text be Reliably Detected? [50.95804851595018]
大規模言語モデル(LLM)は、様々なアプリケーションで非常によく機能します。
盗作、偽ニュースの発生、スパムなどの活動においてこれらのモデルが誤用される可能性があることは、彼らの責任ある使用に対する懸念を引き起こしている。
我々は、攻撃者の存在下で、これらのAIテキスト検出装置の堅牢性を強調テストする。
論文 参考訳(メタデータ) (2023-03-17T17:53:19Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
単一ドメインの一般化(Single Domain Generalization)は、単一のソースドメイン上でモデルをトレーニングすることで、目に見えないターゲットドメインに一般化する問題に取り組む。
本稿では、事前学習された視覚言語モデルを用いて、テキストプロンプトを介して意味領域の概念を導入することを提案する。
本手法は,検出器のバックボーンから抽出した特徴に作用する意味的拡張戦略と,テキストに基づく分類損失によって実現される。
論文 参考訳(メタデータ) (2023-01-13T12:01:18Z) - When Neural Networks Fail to Generalize? A Model Sensitivity Perspective [82.36758565781153]
ドメイン一般化 (Domain Generalization, DG) は、異なる分布の下で見えないドメインでうまく機能するようにモデルを訓練することを目的としている。
本稿では,より現実的で,より困難なシナリオである単一領域一般化(Single-DG)について考察する。
我々は「モデル感度」と命名する一般化と強く相関するモデルの性質を経験的に確認する。
本稿では、高感度の周波数をターゲットとした拡張画像を生成するために、スペクトル逆データ拡張(SADA)の新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-12-01T20:15:15Z) - "That Is a Suspicious Reaction!": Interpreting Logits Variation to
Detect NLP Adversarial Attacks [0.2999888908665659]
敵攻撃は、現在の機械学習研究で直面する大きな課題である。
本研究は, 逆文例のモデルに依存しない検出法を提案する。
論文 参考訳(メタデータ) (2022-04-10T09:24:41Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
クリーンな画像とそれらの逆の例との一致を、出力空間における対照的な損失によって最大化する、逆向きの自己スーパービジョンUDA(ASSUDA)を提案する。
i) セマンティックセグメンテーションにおけるUDA手法のロバスト性は未解明のままであり, (ii) 一般的に自己スーパービジョン(回転やジグソーなど) は分類や認識などのイメージタスクに有効であるが, セグメンテーションタスクの識別的表現を学習する重要な監視信号の提供には失敗している。
論文 参考訳(メタデータ) (2021-05-23T01:50:44Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。