Multimodal Large Language Models for Medicine: A Comprehensive Survey
- URL: http://arxiv.org/abs/2504.21051v1
- Date: Tue, 29 Apr 2025 03:07:38 GMT
- Title: Multimodal Large Language Models for Medicine: A Comprehensive Survey
- Authors: Jiarui Ye, Hao Tang,
- Abstract summary: We introduce the background and fundamental concepts related to LLMs and MLLMs, while emphasizing the working principles of MLLMs.<n>We summarize three main directions of application within healthcare: medical reporting, medical diagnosis, and medical treatment.<n>Our findings are based on a comprehensive review of 330 recent papers in this area.
- Score: 7.250878248686215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MLLMs have recently become a focal point in the field of artificial intelligence research. Building on the strong capabilities of LLMs, MLLMs are adept at addressing complex multi-modal tasks. With the release of GPT-4, MLLMs have gained substantial attention from different domains. Researchers have begun to explore the potential of MLLMs in the medical and healthcare domain. In this paper, we first introduce the background and fundamental concepts related to LLMs and MLLMs, while emphasizing the working principles of MLLMs. Subsequently, we summarize three main directions of application within healthcare: medical reporting, medical diagnosis, and medical treatment. Our findings are based on a comprehensive review of 330 recent papers in this area. We illustrate the remarkable capabilities of MLLMs in these domains by providing specific examples. For data, we present six mainstream modes of data along with their corresponding evaluation benchmarks. At the end of the survey, we discuss the challenges faced by MLLMs in the medical and healthcare domain and propose feasible methods to mitigate or overcome these issues.
Related papers
- From Text to Multimodality: Exploring the Evolution and Impact of Large Language Models in Medical Practice [14.739357670600103]
Large Language Models (LLMs) have rapidly evolved from text-based systems to multimodal platforms.<n>We examine the current landscape of MLLMs in healthcare, analyzing their applications across clinical decision support, medical imaging, patient engagement, and research.
arXiv Detail & Related papers (2024-09-14T02:35:29Z) - A Survey on Benchmarks of Multimodal Large Language Models [65.87641718350639]
This paper presents a comprehensive review of 200 benchmarks and evaluations for Multimodal Large Language Models (MLLMs)
We focus on (1)perception and understanding, (2)cognition and reasoning, (3)specific domains, (4)key capabilities, and (5)other modalities.
Our key argument is that evaluation should be regarded as a crucial discipline to support the development of MLLMs better.
arXiv Detail & Related papers (2024-08-16T09:52:02Z) - TCMD: A Traditional Chinese Medicine QA Dataset for Evaluating Large Language Models [22.76485170022542]
We introduce a new medical question-answering (QA) dataset that contains massive manual instruction for solving Traditional Chinese Medicine examination tasks.
Our TCMD collects massive questions across diverse domains with their annotated medical subjects.
arXiv Detail & Related papers (2024-06-07T13:48:15Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning.
The extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry.
This survey provides a comprehensive and systematic review of the current state of efficient MLLMs.
arXiv Detail & Related papers (2024-05-17T12:37:10Z) - A Comprehensive Survey of Large Language Models and Multimodal Large Language Models in Medicine [9.116392782378753]
Since the release of ChatGPT and GPT-4, large language models (LLMs) and multimodal large language models (MLLMs) have attracted widespread attention.<n>This survey provides a comprehensive overview of the development, principles, application scenarios, challenges, and future directions of LLMs and MLLMs in medicine.
arXiv Detail & Related papers (2024-05-14T13:42:05Z) - D-NLP at SemEval-2024 Task 2: Evaluating Clinical Inference Capabilities of Large Language Models [5.439020425819001]
Large language models (LLMs) have garnered significant attention and widespread usage due to their impressive performance in various tasks.
However, they are not without their own set of challenges, including issues such as hallucinations, factual inconsistencies, and limitations in numerical-quantitative reasoning.
arXiv Detail & Related papers (2024-05-07T10:11:14Z) - Large language models in healthcare and medical domain: A review [4.456243157307507]
Large language models (LLMs) provide proficient responses to free-text queries.
This review explores the potential of LLMs to amplify the efficiency and effectiveness of diverse healthcare applications.
arXiv Detail & Related papers (2023-12-12T20:54:51Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
Large language models (LLMs) have received substantial attention due to their capabilities for understanding and generating human language.
This review aims to provide a detailed overview of the development and deployment of LLMs in medicine.
arXiv Detail & Related papers (2023-11-09T02:55:58Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
This survey addresses the crucial issue of factuality in Large Language Models (LLMs)
As LLMs find applications across diverse domains, the reliability and accuracy of their outputs become vital.
arXiv Detail & Related papers (2023-10-11T14:18:03Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.<n>This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.