MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration
- URL: http://arxiv.org/abs/2506.19835v1
- Date: Tue, 24 Jun 2025 17:52:43 GMT
- Title: MAM: Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis via Role-Specialized Collaboration
- Authors: Yucheng Zhou, Lingran Song, Jianbing Shen,
- Abstract summary: We introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM)<n>Inspired by our empirical findings, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director.<n>This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases.
- Score: 57.98393950821579
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in medical Large Language Models (LLMs) have showcased their powerful reasoning and diagnostic capabilities. Despite their success, current unified multimodal medical LLMs face limitations in knowledge update costs, comprehensiveness, and flexibility. To address these challenges, we introduce the Modular Multi-Agent Framework for Multi-Modal Medical Diagnosis (MAM). Inspired by our empirical findings highlighting the benefits of role assignment and diagnostic discernment in LLMs, MAM decomposes the medical diagnostic process into specialized roles: a General Practitioner, Specialist Team, Radiologist, Medical Assistant, and Director, each embodied by an LLM-based agent. This modular and collaborative framework enables efficient knowledge updates and leverages existing medical LLMs and knowledge bases. Extensive experimental evaluations conducted on a wide range of publicly accessible multimodal medical datasets, incorporating text, image, audio, and video modalities, demonstrate that MAM consistently surpasses the performance of modality-specific LLMs. Notably, MAM achieves significant performance improvements ranging from 18% to 365% compared to baseline models. Our code is released at https://github.com/yczhou001/MAM.
Related papers
- MedChat: A Multi-Agent Framework for Multimodal Diagnosis with Large Language Models [9.411749481805355]
Integrating glaucoma detection with large language models (LLMs) presents an automated strategy to mitigate ophthalmologist shortages.<n>Applying general LLMs to medical imaging remains challenging due to hallucinations, limited interpretability, and insufficient domain-specific medical knowledge.<n>We propose MedChat, a multi-agent diagnostic framework and platform that combines specialized vision models with multiple role-specific LLM agents.
arXiv Detail & Related papers (2025-06-09T03:51:18Z) - Lingshu: A Generalist Foundation Model for Unified Multimodal Medical Understanding and Reasoning [57.873833577058]
We build a multimodal dataset enriched with extensive medical knowledge.<n>We then introduce our medical-specialized MLLM: Lingshu.<n>Lingshu undergoes multi-stage training to embed medical expertise and enhance its task-solving capabilities.
arXiv Detail & Related papers (2025-06-08T08:47:30Z) - MMedAgent-RL: Optimizing Multi-Agent Collaboration for Multimodal Medical Reasoning [63.63542462400175]
We propose MMedAgent-RL, a reinforcement learning-based multi-agent framework that enables dynamic, optimized collaboration among medical agents.<n> Specifically, we train two GP agents based on Qwen2.5-VL via RL: the triage doctor learns to assign patients to appropriate specialties, while the attending physician integrates the judgments from multi-specialists.<n>Experiments on five medical VQA benchmarks demonstrate that MMedAgent-RL not only outperforms both open-source and proprietary Med-LVLMs, but also exhibits human-like reasoning patterns.
arXiv Detail & Related papers (2025-05-31T13:22:55Z) - MultifacetEval: Multifaceted Evaluation to Probe LLMs in Mastering Medical Knowledge [4.8004472307210255]
Large language models (LLMs) have excelled across domains, delivering notable performance on medical evaluation benchmarks.
However, there still exists a significant gap between the reported performance and the practical effectiveness in real-world medical scenarios.
We develop a novel evaluation framework MultifacetEval to examine the degree and coverage of LLMs in encoding and mastering medical knowledge.
arXiv Detail & Related papers (2024-06-05T04:15:07Z) - Med-MoE: Mixture of Domain-Specific Experts for Lightweight Medical Vision-Language Models [17.643421997037514]
We propose a novel framework that tackles both discriminative and generative multimodal medical tasks.
The learning of Med-MoE consists of three steps: multimodal medical alignment, instruction tuning and routing, and domain-specific MoE tuning.
Our model can achieve performance superior to or on par with state-of-the-art baselines.
arXiv Detail & Related papers (2024-04-16T02:35:17Z) - RJUA-MedDQA: A Multimodal Benchmark for Medical Document Question
Answering and Clinical Reasoning [14.366349078707263]
RJUA-MedDQA is a comprehensive benchmark in the field of medical specialization.
This work introduces RJUA-MedDQA, a comprehensive benchmark in the field of medical specialization.
arXiv Detail & Related papers (2024-02-19T06:57:02Z) - A Spectrum Evaluation Benchmark for Medical Multi-Modal Large Language Models [57.88111980149541]
We introduce Asclepius, a novel Med-MLLM benchmark that assesses Med-MLLMs in terms of distinct medical specialties and different diagnostic capacities.<n>Grounded in 3 proposed core principles, Asclepius ensures a comprehensive evaluation by encompassing 15 medical specialties.<n>We also provide an in-depth analysis of 6 Med-MLLMs and compare them with 3 human specialists.
arXiv Detail & Related papers (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
Large language models (LLMs) have received substantial attention due to their capabilities for understanding and generating human language.
This review aims to provide a detailed overview of the development and deployment of LLMs in medicine.
arXiv Detail & Related papers (2023-11-09T02:55:58Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
Large language models (LLMs) have shown promising capabilities in mimicking human-level language comprehension and reasoning.
This paper provides a comprehensive review on the applications and implications of LLMs in medicine.
arXiv Detail & Related papers (2023-11-03T13:51:36Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
Medical artificial general intelligence (MAGI) enables one foundation model to solve different medical tasks.
We propose a new paradigm called Medical-knedge-enhanced mulTimOdal pretRaining (MOTOR)
arXiv Detail & Related papers (2023-04-26T01:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.